Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Plant Sci ; 13: 884903, 2022.
Article in English | MEDLINE | ID: mdl-35693166

ABSTRACT

Ubiquitination, a widespread mechanism of regulating cellular responses in plants, is one of the most important post-translational modifications of proteins in many biological processes and is involved in the regulation of plant disease resistance responses. Predicting ubiquitination is an important technical method for plant protection. Traditional ubiquitination site determination methods are costly and time-consuming, while computational-based prediction methods can accurately and efficiently predict ubiquitination sites. At present, capsule networks and deep learning are used alone for prediction, and the effect is not obvious. The capsule network reflects the spatial position relationship of the internal features of the neural network, but it cannot identify long-distance dependencies or focus on amino acids in protein sequences or their degree of importance. In this study, we investigated the use of convolutional neural networks and capsule networks in deep learning to design a novel model "Caps-Ubi," first using the one-hot and amino acid continuous type hybrid encoding method to characterize ubiquitination sites. The sequence patterns, the dependencies between the encoded protein sequences and the important amino acids in the captured sequences, were then focused on the importance of amino acids in the sequences through the proposed Caps-Ubi model and used for multispecies ubiquitination site prediction. Through relevant experiments, the proposed Caps-Ubi method is superior to other similar methods in predicting ubiquitination sites.

2.
Biomed Res Int ; 2021: 2403418, 2021.
Article in English | MEDLINE | ID: mdl-34239922

ABSTRACT

Single nucleotide polymorphisms (SNPs) play a significant role in microRNA (miRNA) generation, processing, and function and contribute to multiple phenotypes and diseases. Therefore, whole-genome analysis of how SNPs affect miRNA maturation mechanisms is important for precision medicine. The present study established an SNP-associated pre-miRNA (SNP-pre-miRNA) database, named miRSNPBase, and constructed SNP-pre-miRNA sequences. We also identified phenotypes and disease biomarker-associated isoform miRNA (isomiR) based on miRFind, which was developed in our previous study. We identified functional SNPs and isomiRs. We analyzed the biological characteristics of functional SNPs and isomiRs and studied their distribution in different ethnic groups using whole-genome analysis. Notably, we used individuals from Great Britain (GBR) as examples and identified isomiRs and isomiR-associated SNPs (iso-SNPs). We performed sequence alignments of isomiRs and miRNA sequencing data to verify the identified isomiRs and further revealed GBR ethnographic epigenetic dominant biomarkers. The SNP-pre-miRNA database consisted of 886 pre-miRNAs and 2640 SNPs. We analyzed the effects of SNP type, SNP location, and SNP-mediated free energy change during mature miRNA biogenesis and found that these factors were closely associated to mature miRNA biogenesis. Remarkably, 158 isomiRs were verified in the miRNA sequencing data for the 18 GBR samples. Our results indicated that SNPs affected the mature miRNA processing mechanism and contributed to the production of isomiRs. This mechanism may have important significance for epigenetic changes and diseases.


Subject(s)
MicroRNAs/genetics , Polymorphism, Single Nucleotide , Biomarkers/metabolism , Databases, Genetic , Epigenesis, Genetic , Gene Expression Profiling , Genome , Genome-Wide Association Study , Genotype , High-Throughput Nucleotide Sequencing , Humans , Models, Genetic , Phenotype
SELECTION OF CITATIONS
SEARCH DETAIL
...