Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 876
Filter
1.
AMIA Jt Summits Transl Sci Proc ; 2024: 555-564, 2024.
Article in English | MEDLINE | ID: mdl-38827090

ABSTRACT

Automatic HIV phenotyping is needed for HIV research based on electronic health records (EHRs). MIMIC-IV, an extension of MIMIC-III, contains more than 520,000 hospital admissions and has become a valuable EHR database for secondary medical research. However, there was no prior phenotyping algorithm to extract HIV cases from MIMIC-IV, which requires a comprehensive knowledge of the database. Moreover, previous HIV phenotyping algorithms did not consider the new HIV-1/HIV-2 antibody differentiation immunoassay tests that MIMIC-IV contains. Our work provided insight into the structure and data elements in MIMIC-IV and proposed a new HIV phenotyping algorithm to fill in these gaps. The results included MIMIC-IV's data tables and elements used, 1,781 and 1,843 HIV cases from MIMIC-IV's versions 0.4 and 2.1, respectively, and summary statistics of these two HIV case cohorts. They could be used for the development of statistical and machine learning models in future studies about the disease.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 319: 124573, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38830328

ABSTRACT

Excessive fluoride ion (F-) in the environment can affect health and even endanger life when ingested by the human body. However, most fluoride probes have the disadvantages of low sensitivity and long detection time. Herein, fluorescent probe 3a is successfully synthesized by linking two acetylenyltrimethylsilyl groups at both ends of the fluorinated benzothiadiazole core. After the addition of F- to 3a, the emission at 436 nm is significantly quenched and slightly blue-shifted. It is confirmed by electrospray ionization high-resolution mass spectrometry (ESI-HRMS) and density functional theory calculations (DFT) that these changes are due to the F- triggered Si-C bond cleavage and the subsequent inactivation of intramolecular charge transfer (ICT). The detection limit and response time of probe 3a for F- are 10-8 mol/L and 25 s, respectively. Importantly, fluorescent material 3a can be processed into portable test tools for the visual detection of fluoride ion.

3.
J Hazard Mater ; 474: 134808, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38861903

ABSTRACT

The release of carbon disulfide can have adverse effects on our environment and human health. The stability of carbon disulfide and the slow kinetics of hydrolysis can make it challenging to achieve efficient and practical cleavage of the CS bonds. Herein, a calix[4]arene-based porous organic polymer (CPOP-1) is innovatively synthesized through an optimized polycondensation reaction using C-Methylcalix[4]resorcinarene and hexafluoro-hexaazatriphenylene as monomers. Subsequently, palladium-induced calix[4]arene-based porous organic polymer was also synthesized via strong Pd-N coordination bonds to construct the metal-induced porous catalyst (CPOP-2). The polymeric catalyst active center [Pd2+(N^N)(NO3-)2] demonstrated outstanding catalytic hydrolysis performance (11.14 µmol g-1 h-1) in 10.5 h which is significantly enhanced by ca.13.2 times as compared to reported mononuclear Bpy-Pd(NO3)2, and 7.07 times than model trinuclear complex catalyst HATN-Pd-1, respectively. The control experiments revealed that POP catalysts showcased robust stability, prolonged effectiveness, and feasible recyclability during the hydrolytic cleavage of carbon disulfide at room temperature in aqueous solutions. Furthermore, the coordination environment of [Pd2+(N^N)] was validated through XPS, EXAFS, and isotope labeling measurements, and the hydrolysis cleavage products were confirmed e. g. CO2, sulfide, and protons. More importantly, a reaction mechanism was formulated coupled with theoretical calculations, and simulations. The proposed mechanism involves sequential OH- nucleophilic attacks on the carbon atoms of insert-coordinated CS2 and COS, leading to the cleavage of double CS bonds and the formation of CO bonds. The concurrent dissociation of the C-S bond and liberation of CO2 result in an intermediate structure characterized by [(N^N)Pd2+](SH-)2. This intermediate motif serves as the source of the thermodynamic driving force for the reaction.

4.
Small ; : e2402035, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770746

ABSTRACT

Solid-state batteries (SSBs) are under development as high-priority technologies for safe and energy-dense next-generation electrochemical energy storage systems operating over a wide temperature range. Solid-state electrolytes (SSEs) exhibit high thermal stability and, in some cases, the ability to prevent dendrite growth through a physical barrier, and compatibility with the "holy grail" metallic lithium. These unique advantages of SSEs have spurred significant research interests during the last decade. Garnet-type SSEs, that is, Li7La3Zr2O12 (LLZO), are intensively investigated due to their high Li-ion conductivity and exceptional chemical and electrochemical stability against lithium metal anodes. However, poor interfacial contact with cathode materials, undesirable lithium plating along grain boundaries, and moisture-induced chemical degradation greatly hinder the practical implementation of LLZO-based SSEs for SSBs. In this review, the recent advances in synthesis methods, modification strategies, corresponding mechanisms, and applications of garnet-based SSEs in SSBs are critically summarized. Furthermore, a comprehensive evaluation of the challenges and development trends of LLZO-based electrolytes in practical applications is presented to accelerate their development for high-performance SSBs.

5.
Adv Mater ; : e2401943, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768943

ABSTRACT

Engineering F-rich solid electrolyte interphase (SEI) layers is regarded as an effective strategy to enable the long-term cycling stability of potassium-ion batteries (KIBs). However, in the conventional KPF6 carbonate electrolytes, it is challenging to form F-containing SEI layers due to the inability of KPF6 to decompose into KxF. Herein, AlCl3 is employed as a novel additive to change the chemical environment of the KPF6 carbonate electrolyte. First, due to the large charge-to-radius ratio of Al3+, the Al-containing groups in the electrolyte can easily capture F from PF6 - and accelerate the formation of KxF in SEI layer. In addition, AlCl3 also reacts with trace H2O or solvents in the electrolytes to form Al2O3, which can further act as a HF scavenger. Upon incorporating AlCl3 into conventional KPF6 carbonate electrolyte, the hard carbon (HC) anode exhibits an ultra-long lifespan of 10000 cycles with a high coulombic efficiency of ≈100%. When coupled with perylene-3,4,9,10-tetracarboxylic dianhydride (PTCDA), the full cell exhibits a high capacity retention of 81% after 360 cycles-significantly outperforming cells using conventional electrolytes. This research paves new avenues for advancing electrolyte engineering towards developing durable batteries tailored for large-scale energy storage applications.

6.
Mol Genet Genomic Med ; 12(5): e2469, 2024 May.
Article in English | MEDLINE | ID: mdl-38778723

ABSTRACT

BACKGROUND: Paroxysmal kinesigenic dyskinesia (PKD) is the most prevalent kind type of paroxysmal Dyskinesia, characterized by recurrent and transient episodes of involuntary movements. Most PKD cases were attributed to the proline-rich transmembrane protein 2 (PRRT2) gene, in which the c.649 region is a hotspot for known mutations. Even though some patients with PKD have been genetically diagnosed using whole-exome sequencing (WES) and Sanger sequencing, there are still cases of missed diagnoses due to the limitations of sequencing technology and analytic methods on throughput. METHODS: Patients meeting the diagnosis criteria of PKD with negative results of PRRT2-Sanger sequencing and WES were included in this study. Mutation screening and targeted high-throughput sequencing were performed to analyze and verify the sequencing results of the potential mutations. RESULTS: Six patients with PKD with high mutation ratios of c.649dupC were screened using our targeted high-throughput sequencing from 26 PKD patients with negative results of PRRT2-Sanger sequencing and WES (frequency = 23.1%), which compensated for the comparatively shallow sequencing depth and statistical flaws in this region. Compared with the local normal population and other patients with PKD, the mutation ratios of c.649dupC of these six patients with PKD were much higher and also had truncated protein structures and differentially altered mRNA expression. CONCLUSION: Based on the above studies, we emphasize the routine targeted high-throughput sequencing of the c.649 site in the PRRT2 gene in so-called genetic-testing-negative patients with PKD, and manually calculate the deletion and duplication mutations depth and ratios to lower the rate of clinical misdiagnosis.


Subject(s)
Dystonia , Genetic Testing , Membrane Proteins , Nerve Tissue Proteins , Humans , Membrane Proteins/genetics , Nerve Tissue Proteins/genetics , Female , Male , Dystonia/genetics , Dystonia/diagnosis , Child , Adolescent , Genetic Testing/methods , Genetic Testing/standards , Adult , High-Throughput Nucleotide Sequencing/methods , Mutation , Child, Preschool , Exome Sequencing/methods
7.
ACS Appl Mater Interfaces ; 16(22): 28673-28682, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38780466

ABSTRACT

Nitrogen-doped carbon submicrospheres (NCSMs) are synthesized via an efficient and environmentally friendly one-pot polymerization reaction at room temperature, in which dopamine hydrochloride serves as the source for both carbon and nitrogen. Through leverage of its distinctive structure characterized by minimal surface area, fewer oxygen-containing functional groups, and a heightened presence of active nitrogen-doping sites, the synthesized NCSM showcases a noteworthy initial Coulombic efficiency (ICE) of 84.8%, a remarkable sodium storage capacity of 384 mAh g-1, an impressive rate capability of 215 mAh g-1 at 10 A g-1, and a superior cyclic performance, maintaining 83.0% of its capacity after 2000 cycles. The submicron spherical structure, with its limited surface area and scarce oxygen-containing moieties, effectively curtails the irreversible sodium-ion loss in solid-electrolyte interphase film formation, resulting in heightened ICE. The abundant nitrogen doping can expand carbon-layer spacing as well as improve the electron/ion-transport dynamics, guaranteeing a high sodium storage capacity and a strong rate capability. Crucially, the synthesis method presented here is straightforward, effective, and amenable to scaling, offering a novel avenue for the commercialization of sodium-ion batteries.

8.
Biomacromolecules ; 25(6): 3784-3794, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38743836

ABSTRACT

The effective regeneration of large bone defects via bone tissue engineering is challenging due to the difficulty in creating an osteogenic microenvironment. Inspired by the fibrillar architecture of the natural extracellular matrix, we developed a nanoscale bioengineering strategy to produce bone fibril-like composite scaffolds with enhanced osteogenic capability. To activate the surface for biofunctionalization, self-adaptive ridge-like nanolamellae were constructed on poly(ε-caprolactone) (PCL) electrospinning scaffolds via surface-directed epitaxial crystallization. This unique nanotopography with a markedly increased specific surface area offered abundant nucleation sites for Ca2+ recruitment, leading to a 5-fold greater deposition weight of hydroxyapatite than that of the pristine PCL scaffold under stimulated physiological conditions. Bone marrow mesenchymal stem cells (BMSCs) cultured on bone fibril-like scaffolds exhibited enhanced adhesion, proliferation, and osteogenic differentiation in vitro. In a rat calvarial defect model, the bone fibril-like scaffold significantly accelerated bone regeneration, as evidenced by micro-CT, histological histological and immunofluorescence staining. This work provides the way for recapitulating the osteogenic microenvironment in tissue-engineered scaffolds for bone repair.


Subject(s)
Bone Regeneration , Mesenchymal Stem Cells , Osteogenesis , Polyesters , Tissue Engineering , Tissue Scaffolds , Animals , Tissue Scaffolds/chemistry , Rats , Bone Regeneration/drug effects , Mesenchymal Stem Cells/cytology , Osteogenesis/drug effects , Osteogenesis/physiology , Tissue Engineering/methods , Polyesters/chemistry , Cell Differentiation , Rats, Sprague-Dawley , Biomimetic Materials/chemistry , Biomimetic Materials/pharmacology , Cells, Cultured , Cell Proliferation , Skull/injuries , Skull/pathology , Durapatite/chemistry , Durapatite/pharmacology
9.
Inorg Chem ; 63(23): 10519-10526, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38804144

ABSTRACT

The BCN-heterocyclic B-N chain compounds, the sodium and potassium salts of 3 and 4 anions (Na3, Na4, and K4), were synthesized by reactions of ethane 1,2-diamineborane (BH3NH2CH2CH2NH2BH3, 1) and propane 1,2-diamineborane (BH3NH2CH2CH2CH2NH2BH3, 2) with MH (M = Na and K). Then, the neutral B-N chain compounds 5 and 6 were prepared with dehydrogenation of [NH4]3 and [NH4]4, formed by metathesis reactions of Na3 and Na4 with NH4Cl or NH4SCN, respectively. Compounds 7 and 8, analog 5, were also prepared using pyridine and 4-methoxypyridine instead of NH3 in 5. These synthesized compounds were characterized spectroscopically, and the singe-crystal structures of the Na3·18-crown-6 and K4·18-crown-6 adducts were determined. Furthermore, the reactions of Na3 and Na4 with cationic B-N chain compounds, [NH3BH2NH3]Cl and [NH3BH2NH2BH2NH3]Cl, could not form longer BCN-heterocyclic B-N chain. The solubility of metal hydrides, the ability for proton abstracting, the basicity of Lewis bases, and the chelate effect may influence these reactions even though the reaction mechanism is not fully understood.

10.
Acta Biomater ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38815685

ABSTRACT

Tumor starvation therapy utilizing glucose oxidase (GOx), has gained traction due to its non-invasive and bio-safe attributes. However, its effectiveness is often hampered by severe hypoxia in the tumor microenvironment (TME), limiting GOx's catalytic activity. To address this issue, a multifunctional nanosystem based on mesoporous polydopamine nanoparticles (MPDA NPs) was developled to alleviate TME hypoxia. This nanosystem integrated GOx modification and oxygenated perfluoropentane (PFP) encapsulation to address hypoxia-related challenges in the TME. Under NIR laser irradiation, the MPDA NPs exhibit significant photothermal conversion efficacy, activating targeted tumor photothermal therapy (PTT), while also serving as proficient photoacoustic (PA) imaging agents. The ensuing temperature rise facilitates oxygen (O2) release and induces liquid-gas conversion of PFP, generating microbubbles for enhanced ultrasound (US) imaging signals. The supplied oxygen alleviates local hypoxia, thereby enhancing GOx-mediated endogenous glucose consumption for tumor starvation. Overall, the integration of ultrasound/photoacoustic dual imaging-guided PTT and starvation therapy within MPDA-GOx@PFP@O2 nanoparticles (MGPO NPs) presents a promising platform for enhancing the efficacay of tumor treatment by overcoming the complexities of the TME. STATEMENT OF SIGNIFICANCE: A multifunctional MPDA-based theranostic nanoagent was developed for US/PAI imaging-guided PTT and starvation therapy against tumor hypoxia by direct O2 delivery. The incorporation of oxygenated perfluoropentane (PFP) within the mesoporous structure of MGPO not only enables efficient US imaging but also helps in alleviating tumor hypoxia. Moreover, the strong near-infrared (NIR) absorption of MGPO NPs promote the generation of PFP microbubbles and release of oxygen, thereby enhancing US imaging and GOx-mediated starvation therapy. Such a multifunctional nanosystem leverages synergistic effects to enhance therapeutic efficacy while incorporating US/PA imaging for precise visualization of the tumor.

11.
J Cancer Educ ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38622328

ABSTRACT

Residents are actively involved in patient assessment and all aspects of patient care, and they are critical in providing nutritional support education and treatment for patients with cancer. This study aims to assess the nutritional knowledge and performance of resident physicians, providing insights into existing gaps in awareness and practices related to cancer nutrition. A total of 300 resident physicians undergoing standardized residency training in China participated in this study. An anonymous online questionnaire covering demographic characteristics, nutritional knowledge, clinical practice, and training requirements was designed and administered through the "Wenjuanxing" platform. Data were collected from June 1, 2023, to July 31, 2023. Among the participants, only 40.00% demonstrated adequate knowledge of cancer nutrition, and merely 32.00% exhibited proficient performance in nutritional care. Socio-demographic analysis revealed that residents without affiliations and those specializing in obstetrics and gynecology had superior knowledge, while surgery specialists showed significantly worse performance. Most participants expressed a lack of exposure to cancer nutrition education during academic and standardized residency training. The study highlights the demand for enhanced education and the preference for case-based teaching methods. The findings underscore an urgent need for comprehensive oncology nutrition education within China's standardized residency training. Targeted interventions and curriculum enhancements are essential to improve medical talent development and enhance patient care outcomes in oncology. The study emphasizes the critical role of practical, case-based teaching methods in addressing identified gaps in nutritional knowledge and practices among resident physicians.

12.
ACS Appl Mater Interfaces ; 16(15): 18658-18670, 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38587811

ABSTRACT

Three-dimensional (3D)-printed biodegradable polymer scaffolds are at the forefront of personalized constructs for bone tissue engineering. However, it remains challenging to create a biological microenvironment for bone growth. Herein, we developed a novel yet feasible approach to facilitate biomimetic mineralization via self-adaptive nanotopography, which overcomes difficulties in the surface biofunctionalization of 3D-printed polycaprolactone (PCL) scaffolds. The building blocks of self-adaptive nanotopography were PCL lamellae that formed on the 3D-printed PCL scaffold via surface-directed epitaxial crystallization and acted as a linker to nucleate and generate hydroxyapatite crystals. Accordingly, a uniform and robust mineralized layer was immobilized throughout the scaffolds, which strongly bound to the strands and had no effect on the mechanical properties of the scaffolds. In vitro cell culture experiments revealed that the resulting scaffold was biocompatible and enhanced the proliferation and osteogenic differentiation of mouse embryolous osteoblast cells. Furthermore, we demonstrated that the resulting scaffold showed a strong capability to accelerate in vivo bone regeneration using a rabbit bone defect model. This study provides valuable opportunities to enhance the application of 3D-printed scaffolds in bone repair, paving the way for translation to other orthopedic implants.


Subject(s)
Osteogenesis , Tissue Scaffolds , Mice , Animals , Rabbits , Tissue Scaffolds/chemistry , Biomimetics , Bone Regeneration , Polyesters/chemistry , Tissue Engineering , Printing, Three-Dimensional
13.
World J Gastrointest Oncol ; 16(4): 1626-1646, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38660634

ABSTRACT

BACKGROUND: Human-derived gastric cancer organoids (GCOs) are widely used in gastric cancer research; however, the culture success rate is generally low. AIM: To explore the potential influencing factors, and the literature on successful culture rates of GCOs was reviewed using meta-analysis. METHODS: PubMed, Web of Science, and EMBASE were searched for studies. Two trained researchers selected the studies and extracted data. STATA 17.0 software was used for meta-analysis of the incidence of each outcome event. The adjusted Methodological Index for Non-Randomized Studies scale was used to assess the quality of the included studies. Funnel plots and Egger's test were used to detect publication bias. Subgroup analyses were conducted for sex, tissue source, histological classification, and the pathological tumor-node-metastasis (pTNM) cancer staging system. RESULTS: Eight studies with a pooled success rate of 66.6% were included. GCOs derived from women and men had success rates of 67% and 46.7%, respectively. GCOs from surgery or biopsy/endoscopic submucosal dissection showed success rates of 70.9% and 53.7%, respectively. GCOs of poorly-differentiated, moderately-differentiated and signet-ring cell cancer showed success rates of 64.6%, 31%, and 32.7%, respectively. GCOs with pTNM stages I-II and III-IV showed success rates of 38.3% and 65.2%, respectively. Y-27632 and non-Y-27632 use showed success rates of 58.2% and 70%, respectively. GCOs generated with collagenase were more successful than those constructed with Liberase TH and TrypLE (72.1% vs 71%, respectively). EDTA digestion showed a 50% lower success rate than other methods (P = 0.04). CONCLUSION: GCO establishment rate is low and varies by sex, tissue source, histological type, and pTNM stage. Omitting Y-27632, and using Liberase TH, TrypLE, or collagenase yields greater success than EDTA.

14.
ChemSusChem ; : e202400479, 2024 Apr 07.
Article in English | MEDLINE | ID: mdl-38584125

ABSTRACT

As a potential material to solve rampant dendrites and hydrogen evolution reaction (HER) problem of aqueous zinc metal batteries (AZMB), hydrogel electrolytes usually require additional additives or multi-molecular network strategies to solve existing problems of ionic conductivity, mechanical properties and interface stability. However, the intrinsic zincophilic properties of the gel itself are widely neglected leading to the addition of additional molecules and the complexity of the preparation process. In this work, we innovatively utilize the characteristics of acrylamide's high zincophilic group density, activating the intrinsic zincophilic properties of PAM gel through a simple concentration control strategy which reconstructs a novel zinc-electrolyte interface different from conventional PAM electrolyte. The activated novel gel electrolyte with intrinsic zincophilic properties has high ionic conductivity and effectively suppresses water activity, thereby inhibiting HER corrosion. Meanwhile, it induces uniform deposition of (002) crystal planes, leading to excellent deposition kinetics and long cycle life, thereby ensuring high interfacial stability. Compared with conventional PAM gel electrolytes, the activated zincophilic group-rich hydrogel maintained excellent cycling stability (1 mA/cm2, 1 mAh/cm2) over 2250 hours; The Zn//MnO2 coin cell using novel zincophilic group -rich hydrogel still retains a high specific capacity of more than 170 mAh/g at 0.5 A/g after 1000 cycles.

15.
Am J Cancer Res ; 14(3): 1292-1305, 2024.
Article in English | MEDLINE | ID: mdl-38590410

ABSTRACT

Nearly twenty-five percent of colorectal cancer (CRC) patients develop metachronous colorectal liver metastasis (CRLM) after curative surgery. Hepatosteatosis is the most prevalent liver condition worldwide, but its impact on the incidence of metachronous CRLM is understudied. In the present study, we aimed to investigate the predictive value of hepatic steatosis on the development of metachronous CRLM. First, a nested case-control study was conducted, enrolling stage I to III CRC patients in the National Colorectal Cancer Cohort (NCRCC) database. Metachronous CRLM patients and recurrence-free patients were matched via propensity-score matching. Fatty liver was identified based on treatment-naïve CT scans and the degree of hepatic fibrosis was scored. Multivariable analysis was conducted to investigate the association between fatty liver and metachronous CRLM. In our database, a total of 414 patients were included. Metachronous CRLM patients had considerably higher rates of hepatic steatosis (30.9% versus 15.9%, P<0.001) and highly fibrotic liver (11.6% versus 2.9%, P=0.001) compared to recurrence-free patients. Multivariable analysis showed that fatty liver (odds ratios [OR]=1.99, 95% confidence interval [CI] 1.19-3.30, P=0.008) and fibrotic liver (OR=4.27, 95% CI 1.54-11.81, P=0.005) were associated with high risk of metachronous CRLM. Further, a systematic literature review was performed to assess available evidence on the association between hepatosteatosis and development of metachronous CRLM. In the systematic review, 1815 patients were pooled from eligible studies, and hepatic steatosis remained a significant risk factor for metachronous CRLM (OR=1.90, 95% CI 1.35-2.66, P<0.001, I2=25.3%). In conclusion, our data suggest that patients with a steatotic liver and a high fibrosis score at CRC diagnosis have elevated risk of developing metachronous CRLM.

16.
Funct Integr Genomics ; 24(2): 75, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38600341

ABSTRACT

Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality globally. Many herbal medicines and their bioactive compounds have shown anti-tumor properties. This study was conducted to examine the effect of psilostachyin C (PSC), a sesquiterpenoid lactone isolated from Artemisia vulgaris L., in the malignant properties of HCC cells. CCK-8, flow cytometry, wound healing, and Transwell assays revealed that 25 µM PSC treatment significantly suppressed proliferation, cell cycle progression, migration, and invasion of two HCC cell lines (Hep 3B and Huh7) while promoting cell apoptosis. Bioinformatics prediction suggests CREB binding protein (CREBBP) as a promising target of PSC. CREBBP activated transcription of GATA zinc finger domain containing 2B (GATAD2B) by binding to its promoter. CREBBP and GATAD2B were highly expressed in clinical HCC tissues and the acquired HCC cell lines, but their expression was reduced by PSC. Either upregulation of CREBBP or GATAD2B restored the malignant properties of HCC cells blocked by PSC. Collectively, this evidence demonstrates that PSC pocessess anti-tumor functions in HCC cells by blocking CREBBP-mediated transcription of GATAD2B.


Subject(s)
Carcinoma, Hepatocellular , Heterocyclic Compounds, 3-Ring , Liver Neoplasms , Pyrones , Humans , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , CREB-Binding Protein/genetics , CREB-Binding Protein/metabolism , Cell Line, Tumor , Cell Proliferation , Gene Expression Regulation, Neoplastic
17.
Mol Nutr Food Res ; 68(7): e2300739, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38528314

ABSTRACT

Age-related cognitive decline is primarily attributed to the progressive weakening of synaptic function and loss of synapses, while age-related gut microbial dysbiosis is known to impair synaptic plasticity and cognitive behavior by metabolic alterations. To improve the health of the elderly, the protective mechanisms of Oudemansiella raphanipes polysaccharide (ORP-1) against age-related cognitive decline are investigated. The results demonstrate that ORP-1 and its gut microbiota-derived metabolites SCFAs restore a healthy gut microbial population to handle age-related gut microbiota dysbiosis mainly by increasing the abundance of beneficial bacteria Dubosiella, Clostridiales, and Prevotellaceae and reducing the abundance of harmful bacteria Desulfovibrio, strengthen intestinal barrier integrity by abolishing age-related alterations of tight junction (TJ) and mucin 2 (MUC2) proteins expression, diminish age-dependent increase in circulating inflammatory factors, ameliorate cognitive decline by reversing memory- and synaptic plasticity-related proteins levels, and restrain hyperactivation of microglia-mediated synapse engulfment and neuroinflammation. These findings expand the understanding of prebiotic-microbiota-host interactions.


Subject(s)
Agaricales , Brain-Gut Axis , Cognitive Dysfunction , Humans , Aged , Dysbiosis/metabolism , Prebiotics , Cognitive Dysfunction/drug therapy , Cognitive Dysfunction/prevention & control , Cognitive Dysfunction/metabolism
18.
ACS Appl Mater Interfaces ; 16(13): 16744-16753, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38502965

ABSTRACT

To reduce the dependence on traditional fossil energy, developing efficient energy storage systems is urgent. The reserves of aluminum resources in the earth's crust are extremely rich, which makes aluminum-ion batteries a promising competitor of new energy storage devices. Here, we report a poly(3-methylthiophene)/graphene (P3TH/Graphene) composite as the cathode of an aluminum-ion battery. The adjustment of polymer chain spacing by the methyl side chain provides a channel conducive to the transport of large-size AlCl4- complexes. The addition of electron donor groups also changes the electron delocalization characteristics of polymers and improves the specific capacity of the material. At the same time, the in situ composite of graphene can enhance the Π-Π interaction to form a favorable electronic transmission channel. At a current density of 200 mA g-1, the P3TH/Graphene composite showed a specific capacity of ∼150 mA g-1. The flexible structure of the polymer also guarantees the excellent rate capability of the composite.

19.
PLoS One ; 19(3): e0299385, 2024.
Article in English | MEDLINE | ID: mdl-38478538

ABSTRACT

The Taihe Black-Bone silky fowl chicken (BB-sfc) is a renowned dietary and medicinal chicken globally recognized for its high nutritional and medicinal value. Compared to the local Black-Bone black-feathered chicken (BB-bfc), the Taihe silky fowl chicken has higher levels of amino acids, trace elements, and unsaturated fatty acids in their muscles, which offer anti-aging, anti-cancer, and immune enhancing benefits. Despite this, the unique nutritional components, genes, and proteins in Taihe silky fowl chicken muscles are largely unknown. Therefore, we performed a comprehensive transcriptome and proteome analysis of muscle development between BB-sfc and BB-bfc chickens using RNA-Seq and TMT-based quantitative proteomics methods. RNA-Seq analysis identified 286 up-regulated genes and 190 down-regulated genes in BB-sfc chickens, with oxidoreductase activity and electron transfer activity enriched in up-regulated genes, and phospholipid homeostasis and cholesterol transporter activity enriched in down-regulated genes. Proteome analysis revealed 186 significantly increased and 287 significantly decreased proteins in Taihe BB-sfc chicken muscles, primarily affecting mitochondrial function and oxidative phosphorylation, crucial for enhancing muscle antioxidant capacity. Integrated transcriptome and proteome analysis identified 6 overlapped up-regulated genes and 8 overlapped down-regulated genes in Taihe silky fowl chicken, related to improved muscle antioxidant status. Taken together, this research provides a comprehensive database of gene expression and protein information in Taihe Black-Bone silky fowl chicken muscles, aiding in fully exploring their unique economic value in the future.


Subject(s)
Chickens , Proteome , Animals , Chickens/genetics , Proteome/genetics , Transcriptome , Silk/genetics , Antioxidants , Muscles , China
20.
J Colloid Interface Sci ; 665: 152-162, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38520932

ABSTRACT

H2 and formate are important energy carriers in fuel-cells and feedstocks in chemical industry. The hydrogen evolution reaction (HER) coupling with electro-oxidative cleavage of thermodynamically favorable polyols is a promising way to coproduce H2 and formate via electrochemical means, highly active catalysts for HER and electrooxidative cleavage of polycols are the key to achieve such a goal. Herein, molybdenum (Mo), tungsten (W) doped cobalt phosphides (Co2P) deposited onto nickel foam (NF) substrate, denoted as Mo-Co2P/NF and W-Co2P/NF, respectively, were investigated as catalytic electrodes for HER and electrochemical glycerol oxidation reaction (GOR) to yield H2 and formate. The W-Co2P/NF electrode exhibited low overpotential (η) of 113 mV to attain a current density (J) of -100 mA cm-2 for HER, while the Mo-Co2P/NF electrode demonstrated high GOR efficiency for selective production of formate. In situ Raman and infrared spectroscopic characterizations revealed that the evolved CoO2 from Co2P is the genuine catalytic sites for GOR. The asymmetric electrolyzer based on W-Co2P/NF cathode and Mo-Co2P/NF anode delivered a J = 100 mA cm-2 at 1.8 V voltage for glycerol electrolysis, which led to 18.2 % reduced electricity consumption relative to water electrolysis. This work highlights the potential of heteroelement doped phosphide in catalytic performances for HER and GOR, and opens up new avenue to coproduce more widespread commodity chemicals via gentle and sustainable electrocatalytic means.

SELECTION OF CITATIONS
SEARCH DETAIL
...