Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Colloid Interface Sci ; 664: 801-808, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492381

ABSTRACT

Ecofriendly fabrication of anti-oil-fouling materials is of interest. Surfaces with underwater superoleophobicity have been fabricated which exhibit limited mechanical durability and water resistance. In this study, we report on a bioinspired bilayer design of a transparent anti-oil-fouling coating. Seaweed surfaces show anti-oil-fouling in the sea due to its high surface hydration ability. Mussels can adhere tightly onto a surface with good stability in the sea by virtue of its levodopa-containing secretions. The surface layer was fabricated using a crosslinked combination of carboxymethyl cellulose (CMC) and sodium alginate (AlgS) inspired by seaweed, with the addition of calcium ions. Polydopamine (PDA), a derivative of levodopa, was used as the underlayer to enhance bonding strength and water resistance. Oil that adhered to the coated surface was spontaneously detached upon immersion in water. The mechanism underlying this anti-oil-fouling effect was elucidated using Gibbs free energy theory. The coating exhibited mechanical durability and water resistance. The coating is transparent and preserves the original color of the substrate. The coated glass showed stable anti-fogging and anti-frost performance. These coatings hold promise for a wide range of anti-oil-fouling applications.

2.
Materials (Basel) ; 13(15)2020 Jul 24.
Article in English | MEDLINE | ID: mdl-32722177

ABSTRACT

The effect of the Zn/Mg ratio on microstructures, mechanical properties and corrosion performances of Al-Zn-Mg alloys was studied. Microstructures were characterized using the optical microscope (OM), scanning electron microscope (SEM) and transmission electron microscope (TEM). Tensile tests, intergranular corrosion (IGC) and stress corrosion cracking (SCC) tests were conducted to study the properties. Microstructures results indicated that with the decrease of the Zn/Mg ratio, the recrystallization proportion and the fraction of second phase decreased, while the size of η' (MgZn2) phases in grain interior also significantly decreased. The number density of η' phases in grain interior increased and grain boundary precipitates developed discontinuous distribution with the decrease of the Zn/Mg ratio. These microstructures contributed to the significant improvement of the strength and corrosion resistance. The tensile strength and yield strength increased by 34.1% and 47.4%, respectively, with the Zn/Mg ratio decreased from 11.4 to 6.1. Calculating results indicated that the enhancement of strength mainly contributed from the solid-solution strengthening, grain-boundary strengthening and precipitation strengthening. The intergranular corrosion degree was greatly relieved and the stress corrosion sensitivity index decreased from 0.031 to 0.007 with the Zn/Mg ratio decreased from 11.4 to 6.1.

SELECTION OF CITATIONS
SEARCH DETAIL
...