Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
ACS Sens ; 8(7): 2702-2712, 2023 07 28.
Article in English | MEDLINE | ID: mdl-37357408

ABSTRACT

Total alkalinity (TA) is an essential variable for the study of physical and biogeochemical processes in coastal and oceanic systems, and TA data obtained at high spatiotemporal resolutions are highly desired. The performance of the current in situ TA analyzers/sensors, including precision, accuracy, and deployment duration, cannot fully meet most research requirements. Here, we report on a novel high-precision in situ analyzer for surface seawater TA (ISA-TA), based on an automated single-point titration with spectrophotometric pH detection, and capable of long-term field observations. The titration was carried out in a circulating loop, where the titrant (a mixture of HCl and bromocresol green) and seawater sample were mixed in a constant volume ratio. The effect of ambient temperature on the TA measurement was corrected with an empirical formula. The weight, height, diameter, and power consumption of ISA-TA were 8.6 kg (in air), 33 cm, 20 cm, and 7.3 W, respectively. A single measurement required ∼7 min of running time, ∼32 mL of seawater, and ∼0.6 mL of titrant. ISA-TA was able to operate continuously in the field for up to 30 days, and its accuracies in the laboratory and field were 0.5 ± 1.7 µmol kg-1 (n = 13) and 10.3 ± 2.8 µmol kg-1 (n = 29) with precisions of 0.6-0.8 µmol kg-1 (n = 51) and 0.2-0.7 µmol kg-1 (n = 8), respectively. This study provides the research community with a new tool to obtain seawater TA data of high temporal resolution.


Subject(s)
Seawater , Oceans and Seas , Spectrophotometry
SELECTION OF CITATIONS
SEARCH DETAIL
...