Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 13(46): 55102-55111, 2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34762409

ABSTRACT

Although research progress on mimicking natural photosynthesis for solar-to-fuel conversion has been continuously made, exploring broadband spectral-responsive materials with suitable band positions and high stability still remains a huge challenge. Herein, we, for the first time, report novel AsP nanosheets (NSs) with P-type semiconducting property and enough negative conduction band, which can work as a stable near-infrared (NIR) region-responsive electron donor for water reductive hydrogen (H2) production. To mimic photosystem I, Au nanorods (NRs) act as electron transport media, which are also responsible for the enhanced electric field nearby, and 1T-MoS2 NSs as a hydrogen evolution catalyst are orderly coupled with AsP NSs with a sheet-rod-sheet structure by electrostatic self-assembly. The cascaded band level alignment enables unidirectional electron flow from AsP to Au and then to MoS2, and the optimum H2 production rate of the MoS2-Au-AsP ternary heterojunction reaches 125.52 µmol g-1 h-1 with good stability even after being stored for several months under light irradiation with a wavelength longer than 700 nm. This work provides a platform that is energetically tailored to drive a solar broad-spectrum fuel generation, including CO2 reduction and N2 fixation.

2.
Nat Commun ; 12(1): 3879, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34162878

ABSTRACT

Fluorescent type nuclear battery consisting of scintillator and photovoltaic device enables semipermanent power source for devices working under harsh circumstances without instant energy supply. In spite of the progress of device structure design, the development of scintillators is far behind. Here, a Cs3Cu2I5: Mn scintillator showing a high light yield of ~67000 ph MeV-1 at 564 nm is presented. Doping and intrinsic features endow Cs3Cu2I5: Mn with robust thermal stability and irradiation hardness that 71% or >95% of the initial radioluminescence intensity can be maintained in an ultra-broad temperature range of 77 K-433 K or after a total irradiation dose of 2590 Gy, respectively. These superiorities allow the fabrication of efficient and stable nuclear batteries, which show an output improvement of 237% respect to the photovoltaic device without scintillator. Luminescence mechanisms including self-trapped exciton, energy transfer, and impact excitation are proposed for the anomalous dramatic radioluminescence improvement. This work will open a window for the fields of nuclear battery and radiography.

3.
Small ; 17(28): e2100003, 2021 07.
Article in English | MEDLINE | ID: mdl-34110694

ABSTRACT

At present, tumor diagnosis is performed using common procedures, which are slow, costly, and still presenting difficulties in diagnosing tumors at their early stage. Tumor therapeutic methods also mainly rely on large-scale equipment or non-intelligent treatment approaches. Thus, an early and accurate tumor diagnosis and personalized treatment may represent the best treatment option for a successful result, and the efforts in finding them are still in progress and mainly focusing on non-destructive, integrated, and multiple technologies. These objectives can be achieved with the development of advanced devices and smart technology that represent the topic of the current investigations. Therefore, this review summarizes the progress in tumor diagnosis and therapy and briefly explains the advantages and disadvantages of the described microdevices, finally proposing advanced micro smart devices as the future development trend for tumor diagnosis and therapy.


Subject(s)
Drug Delivery Systems , Neoplasms , Humans , Neoplasms/diagnosis , Neoplasms/therapy
4.
ACS Appl Mater Interfaces ; 8(4): 2680-7, 2016 Feb 03.
Article in English | MEDLINE | ID: mdl-26761564

ABSTRACT

Monolayer MoS2 nanosheets (NSs) are promising anode materials for lithium-ion batteries because all redox reactions take place at the surface without lithium-ion diffusion limit. However, the expanded band gap of monolayer MoS2 NSs (∼1.8 eV) compared to their bulk counterparts (∼1.2 eV) and restacking tendency due to the van der Waals forces result in poor electron transfer and loss of the structure advantage. Here, a facile approach is developed to fabricate the MoS2-graphene aerogels comprising controlled three-dimensional (3D) porous architectures constructed by interconnected monolayer MoS2-graphene hybrid NSs. The robust 3D architectures combining with the monolayer feature of the hybrid NSs not only prevent the MoS2 and graphene NSs from restacking, but also enable fast electrode kinetics due to the surface reaction mechanism and highly conductive graphene matrix. As a consequence, the 3D porous monolayer MoS2-graphene composite aerogels exhibit a large reversible capacity up to 1200 mAh g(-1) as well as outstanding cycling stability and rate performance, making them promising as advanced anode materials for lithium-ion batteries.

SELECTION OF CITATIONS
SEARCH DETAIL
...