Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Bioeng Biotechnol ; 12: 1374423, 2024.
Article in English | MEDLINE | ID: mdl-38595994

ABSTRACT

Ovarian cancer presents a substantial challenge due to its high mortality and recurrence rates among gynecological tumors. Existing clinical chemotherapy treatments are notably limited by drug resistance and systemic toxic side effects caused by off target drugs. Sonodynamic therapy (SDT) has emerged as a promising approach in cancer treatment, motivating researchers to explore synergistic combinations with other therapies for enhanced efficacy. In this study, we developed magnetic sonodynamic nanorobot (Fe3O4@SiO2-Ce6, FSC) by applying a SiO2 coating onto Fe3O4 nanoparticle, followed by coupling with the sonosensitizer Ce6. The magnetic FSC nanorobot collectives could gather at fixed point and actively move to target site regulated by magnetic field. In vitro experiments revealed that the magnetic FSC nanorobot collectives enabled directional navigation to the tumor cell area under guidance. Furthermore, under low-intensity ultrasonic stimulation, FSC nanorobot collectives mediated sonodynamic therapy exhibited remarkable anti-tumor performance. These findings suggest that magnetically actuated sonodynamic nanorobot collectives hold promising potential for application in target cancer therapy.

2.
RSC Adv ; 14(19): 13180-13189, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38655468

ABSTRACT

Disulfiram (DSF) can target and kill cancer cells by disrupting cellular degradation of extruded proteins and has therefore received particular attention for its tumor chemotherapeutic potential. However, the uncontrollable Cu2+/DSF ratio reduces the efficacy of DSF-mediated chemotherapy. Herein, self-supplying Cu2+ and oxidative stress synergistically enhanced DSF-mediated chemotherapy is proposed for melanoma-based on PVP-coated CuO2 nanodots (CPNDs). Once ingested, DSF is broken down to diethyldithiocarbamate (DTC), which is delivered into a tumor via the circulation. Under the acidic tumor microenvironment, CPNDs produce sufficient Cu2+ and H2O2. DTC readily chelates Cu2+ ions to generate CuET, which shows antitumor efficacy. CuET-mediated chemotherapy can be enhanced by H2O2. Sufficient Cu2+ generation can guarantee the maximum efficacy of DSF-mediated chemotherapy. Furthermore, released Cu2+ can be reduced to Cu+ by glutathione (GSH) and O2- in tumor cells, and Cu+ can react with H2O2 to generate toxic hydroxyl radicals (·OH) via a Fenton-like reaction, promoting the efficacy of CuET. Therefore, this study hypothesizes that employing CPNDs instead of Cu2+ ions could enhance DSF-mediated melanoma chemotherapy, providing a simple but efficient strategy for achieving chemotherapeutic efficacy.

3.
Adv Healthc Mater ; 13(13): e2303027, 2024 May.
Article in English | MEDLINE | ID: mdl-38323853

ABSTRACT

Effective neuroprotective agents are required to prevent neurological damage caused by reactive oxygen species (ROS) generated by cerebral ischemia-reperfusion injury (CIRI) following an acute ischemic stroke. Herein, it is aimed to develop the neuroprotective agents of cerium oxide loaded with platinum clusters engineered modifications (Ptn-CeO2). The density functional theory calculations show that Ptn-CeO2 could effectively scavenge ROS, including hydroxyl radicals (·OH) and superoxide anions (·O2 -). In addition, Ptn-CeO2 exhibits the superoxide dismutase- and catalase-like enzyme activities, which is capable of scavenging hydrogen peroxide (H2O2). The in vitro studies show that Ptn-CeO2 could adjust the restoration of the mitochondrial metabolism to ROS homeostasis, rebalance cytokines, and feature high biocompatibility. The studies in mice CIRI demonstrate that Ptn-CeO2 could also restore cytokine levels, reduce cysteine aspartate-specific protease (cleaved Caspase 3) levels, and induce the polarization of microglia to M2-type macrophages, thus inhibiting the inflammatory responses. As a result, Ptn-CeO2 inhibits the reperfusion-induced neuronal apoptosis, relieves the infarct volume, reduces the neurological severity score, and improves cognitive function. Overall, these findings suggest that the prominent neuroprotective effect of the engineered Ptn-CeO2 has a significant neuroprotective effect and provides a potential therapeutic alternative for CIRI.


Subject(s)
Cerium , Neuroprotective Agents , Platinum , Reperfusion Injury , Cerium/chemistry , Cerium/pharmacology , Animals , Reperfusion Injury/drug therapy , Reperfusion Injury/metabolism , Mice , Neuroprotective Agents/pharmacology , Neuroprotective Agents/chemistry , Neuroprotective Agents/therapeutic use , Platinum/chemistry , Platinum/pharmacology , Brain Ischemia/drug therapy , Brain Ischemia/metabolism , Neurons/drug effects , Neurons/metabolism , Male , Reactive Oxygen Species/metabolism , Homeostasis/drug effects , Mice, Inbred C57BL , Apoptosis/drug effects
4.
Adv Sci (Weinh) ; 10(33): e2304002, 2023 11.
Article in English | MEDLINE | ID: mdl-37807805

ABSTRACT

Ulcerative colitis (UC) is a chronic inflammatory bowel disease mainly involving the colon and rectum, which features recurrent mucosal inflammation. The excessive production of reactive oxygen species (ROS) is a trigger for pathological changes such as cell apoptosis and disordered immune microenvironments, which are crucial for the progression of UC and can be a promising therapeutic target. Nowadays, the development of targeted therapeutic strategies for UC is still in its infancy. Thus, developing effective therapies based on ROS scavenging and elucidating their molecular pathways are urgently needed. Herein, a biomimetic nanoformulation (Pd@M) with cubic palladium (Pd) as the core and macrophage-derived extracellular vesicles (MEVs) as the shell is synthesized for the treatment of UC. These Pd@M nanoformulations exhibit multienzyme-like activities for effective ROS scavenging, excellent targeting ability as well as good biocompatibility. It is verified that Pd@M can regulate the polarization state of macrophages by inhibiting glycolysis, and decrease neutrophil infiltration and recruitment. In this way, the colonic inflammatory and immune microenvironment is remodeled, and apoptosis is prevented, ultimately improving colonic mucosal barrier function and alleviating colitis in the mouse model. This finding provides a promising alternative option for the treatment of UC patients.


Subject(s)
Colitis, Ulcerative , Extracellular Vesicles , Animals , Mice , Humans , Colitis, Ulcerative/drug therapy , Palladium/therapeutic use , Reactive Oxygen Species/metabolism , Macrophages/metabolism , Extracellular Vesicles/metabolism , Homeostasis
5.
Exp Ther Med ; 26(2): 409, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37522065

ABSTRACT

Salvianolate (Sal) is a medicinal composition that is widely used in China for the treatment of coronary heart disease and angina pectoris. The aim of the present study was to investigate the potential macrophage-mediated pro-angiogenic effects of Sal in vitro. In addition, another aim was to explore the effects of Sal in a rat model of transient middle cerebral artery occlusion (tMCAO) along with the potential mechanism by which it promotes angiogenesis. In this study, human umbilical vein endothelial cells (HUVECs) and Raw264.7 macrophages in vitro, and a rat tMCAO model in vivo were used to detect the pro-angiogenic effect and mechanism of Sal. The results of in vitro experiments showed that the viability, migration and tube formation of HUVECs were promoted by the supernatant of Sal-treated Raw264.7 macrophages (s-Sal) but not by Sal alone. s-Sal also increased the levels of phosphorylated (p-)VEGFR-2, p-AKT and p-p38 MAPK in HUVECs while Sal alone did not. In vivo, treatment with Sal significantly reduced the cerebral infarction volume and neurological deficit scores in the rat tMCAO model. Similar to the mechanism observed in the in vitro experiments, Sal treatment upregulated the protein expression of VEGF and VEGFR-2, in addition to the phosphorylation of VEGFR-2, AKT and p38, in the brain tissues of the tMCAO model rats. In summary, the results of the present study suggest that the mechanism of Sal-mediated angiogenesis is associated with stimulation of the VEGF/VEGFR-2 signaling pathway by macrophages. This suggests the potential of Sal as a therapeutic option for the treatment of acute cerebral ischemic injury, which may act via the promotion of angiogenesis.

6.
Glob Chall ; 7(6): 2200207, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37287596

ABSTRACT

An isotropic thermo-electrochemical cell is introduced with a high Seebeck coefficient (S e) of 3.3 mV K-1 that uses a ferricyanide/ferrocyanide/guanidinium-based agar-gelated electrolyte. A power density of about 20 µW cm-2 is achieved at a temperature difference of about 10 K, regardless of whether the heat source is on the top or bottom section of the cell. This behavior is very different from that of cells with liquid electrolytes, which exhibit high anisotropy, and for which high S e values are achieved only by heating the bottom electrode. The guanidinium-containing gelatinized cell does not exhibit steady-state operation, but its performance recovers when disconnected from the external load, suggesting that the observed power drop under load conditions is not due to device degeneration. The large S e value and isotropic properties can mean that the novel system represents a major advancement from the standpoint of harvesting of low-temperature heat, such as body heat and solar thermal heat.

7.
ACS Appl Mater Interfaces ; 15(27): 32647-32655, 2023 Jul 12.
Article in English | MEDLINE | ID: mdl-37364061

ABSTRACT

Organic-inorganic lead halide perovskite materials have received great attention in recent years. However, the poor stability of these materials severely limits the commercial application of perovskite devices. Here, we used thiophene-2-ethylammonium iodide (TEAI) material as the organic spacer NH4SCN and NH4Cl as the dual additives to realize high-stability two-dimensional (2D)/three-dimensional (3D) perovskite thin films for perovskite photodetectors. Then, we investigated different effects of the dual additives on the orientation and crystallinity of the perovskite films. At room temperature, the optimized 2D/3D perovskite photodetectors exhibit good performance with high external quantum efficiency (EQE) (72%), large responsivity (0.36 A/W), high detectivity (2.46 × 1012 Jones at the bias of 0 V), high response frequency (1.7 MHz), and improved stability (retains 90% photocurrent after 2000 h storage in RT and 10% RH conditions). Based on these devices, a dual-channel optical transport system and a light-intensity adder are achieved. The results of this study indicate that, with a simple process, the TEAI and dual-additives based 2D/3D perovskite photodetectors have promising applications in light-intensity adder and optical communication systems.

8.
J Trace Elem Med Biol ; 79: 127193, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37269648

ABSTRACT

BACKGROUND: The relationship between iron metabolism and variations in blood pressure and hypertension risk is still not clear. This study aimed to determine whether iron metabolism is associated with changes in blood pressure and hypertension prevalence in the general United States population. METHODS: The National Health and Nutrition Examination Survey (NAHNES) database contains data on 116876 Americans from 1999 to 2020 years. Data from the NHANES database were used to examine the relationships between iron metabolism (serum iron [SI], serum ferritin [SF], and soluble transferrin receptor [sTfR]) and changes in blood pressure and hypertension prevalence. Generalized linear models and restricted cubic spline (RCS) plot curves were used to estimate the relationship between iron metabolism and hypertension. Further, generalized additive models with smooth functions were used to identify the relationship between iron metabolism and blood pressure. Finally, a stratified subgroup analysis was performed. RESULTS: A total of 6710 participants were included in our analysis. The RCS plot showed a linear relationship between SI, as well as sTfR, and hypertension prevalence. SF and hypertension prevalence were associated in a J-shape. In addition, the relationship between SI and systolic blood pressure (SBP) and diastolic blood pressure (DBP) decreased initially and then increased. A correlation between SF, SBP, and DBP first decreased, then increased, and finally decreased. A positive linear correlation existed between sTfR and SBP, but it increased and then decreased with DBP. CONCLUSION: The correlation between SF and hypertension prevalence displayed a J-curve. In contrast, the correlation between SI, as well as sTfR, and hypertension risk was negative and positive, respectively.


Subject(s)
Ferritins , Hypertension , Humans , United States , Blood Pressure/physiology , Nutrition Surveys , Cross-Sectional Studies , Hypertension/epidemiology , Receptors, Transferrin , Iron
9.
Adv Healthc Mater ; 12(10): e2202562, 2023 04.
Article in English | MEDLINE | ID: mdl-36610060

ABSTRACT

Ferroptosis-based treatment strategies display the potential to suppress some malignant tumors with intrinsic apoptosis resistance. However, current related cancer treatments are still hampered by insufficient intracellular reactive oxygen species (ROS) levels and Fe2+ contents, posing considerable challenges for their clinical translation. Herein, an intracellular acid-biodegradable iridium-coordinated nanosheets (Ir-Hemin) with sonodynamic therapy (SDT) properties to effectively induce ferroptosis in tumor cells through multiple regulatory pathways are proposed. Under ultrasound (US) irradiation, Ir-Hemin nanosheets act as nanosonosensitizers to effectively generate ROS, subsequently causing the accumulation of lipid peroxides (LPO) and inducing ferroptotic cell death. Furthermore, these Ir-Hemin nanosheets decompose quickly to release hemin and Ir(IV), which deplete intracellular glutathione (GSH) to deactivate the enzyme glutathione peroxidase 4 (GPX4) and initiate the ferroptosis pathway. Specifically, the released hemin enables heme oxygenase 1 (HO-1) upregulation for endogenous ferrous ion supplementation, which compensates for the toxicity concerns brought about by the large uptake of exogenous iron. Surprisingly, Ir-Hemin nanosheets exhibit high tumor accumulation and trigger effective ferroptosis for tumor therapy. These Ir-Hemin nanosheets display pronounced synergistic anticancer efficacy under US stimulation both in vitro and in vivo, providing a strong rationale for the application of ferroptosis in cancer treatment.


Subject(s)
Iridium , Neoplasms , Humans , Iridium/pharmacology , Reactive Oxygen Species/metabolism , Hemin/pharmacology , Hemin/therapeutic use , Cell Death , Apoptosis , Neoplasms/drug therapy , Glutathione/metabolism
10.
J Phys Chem Lett ; 13(3): 815-821, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35044181

ABSTRACT

The photodetector based on methylammonium lead iodide (MAPbI3) is a promising device for wide wavelength range (380-780 nm) sensitivity. However, its industrial application is limited by the relatively low response speed to the light signal, which has received little attention. Only a few reports show low-bandwidth characteristics (less than 1 MHz at 0.1 cm2). Here, when a cosolvent strategy to manipulate the thickness and the crystallinity of the MAPbI3 film is adopted, photodetectors with a -3 dB bandwidth of 4.7 MHz are achieved (at 0.16 cm2 photo detecting area). The performance is significantly better than most of the organic and hybrid photodetectors reported so far. Based on this photodetector and an organic light-emitting diode (OLED), an organic optocoupler system with 1 MHz response frequency is successfully set up. Our results suggest that thickness-manipulated cosolvent strategy is a promising method in high-speed MAPbI3-based photodetectors.

11.
Article in English | MEDLINE | ID: mdl-35075902

ABSTRACT

Ferricyanide/ferrocyanide/guanidinium-based thermoelectrochemical cells have been investigated under different loading conditions in this work. Compared with ferricyanide/ferrocyanide-based devices, the device with guanidinium-added electrolytes shows higher power and energy densities. We observed that the enhanced performance is not due to the ionic Seebeck effect of guanidinium but because of the configuration entropy change resulting from the selective binding of Gdm+ to Fe(CN)64-. However, the device with guanidinium-added electrolyte does not show steady-state operation. The two possible reasons include (1) the difficult diffusion of Fe(CN)63- into the crystal layer of (Gdm+)n[Fe(CN)64-] at the hot electrode and (2) the difficult precipitation of (Gdm+)n[Fe(CN)64-] formed at the cold side upon the binding of the reduced Fe(CN)64- with Gdm+. Nevertheless, the performance recovers once the device is disconnected from the external loading. Due to the high thermopower after adding guanidinium, we successfully fabricate self-powered sensors by connecting four flexible cells in series. The sensors can transfer humidity, temperature, and air pressure data wirelessly using body heat. Therefore, ferricyanide/ferrocyanide/guanidinium is a promising electrolyte material for applications of low-grade energy harvesting.

12.
Int J Pharm ; 612: 121356, 2022 Jan 25.
Article in English | MEDLINE | ID: mdl-34919996

ABSTRACT

PURPOSE: Drug-resistant gram-negative bacteria have emerged as a global crisis. Therefore, novel antibiotics and novel anti-infection strategies are urgently needed. Current antibiotics remain unsatisfactory due to poor targeting efficiency and poor drug penetration through the bacterial cell wall. Thus, targeted delivery of antibiotics into gram-negative bacteria should be a promising approach. Moreover, gram-negative bacteria can release lipopolysaccharide (LPS) to induce inflammatory response and septic shock, further increasing the disease burden. Hence, it is also promising to neutralize LPS while delivering antibiotics. This study aims to develop a multifunctional bacteria-targeting liposome that could enhance the delivery of antibiotics and adsorb LPS. METHODS: A polymyxin B (PMB)-modified liposomal system (P-Lipo) was developed as novel carrier of cinnamaldehyde (CA) by using a thin-film evaporation method. Liposome morphology, size, zeta potential, stability, entrapment efficiency, and in vitro release were systematically evaluated. The bacteria-targeting effect and LPS-neutralizing capacity of P-Lipo were evaluated both in vitro and in vivo. The antibacterial effect of CA-loaded P-Lipo was assessed in Escherichia coli (E. coli) O157:H7 and Pseudomonas aeruginosa (P. aeruginosa). Ultimately, the therapeutic effect of P-CA-Lipo was investigated in E. coli O157:H7-infected mice. RESULTS: P-Lipo was successfully synthesized and encapsulated with CA, which was well characterized. Both in vivo and in vitro experiments demonstrated that P-Lipo could efficiently target the E. coli after modification with PMB. Compared with free CA, CA-Lipo, and P-Lipo, P-CA-Lipo exhibited a significantly enhanced inhibitory effect on E. coli and P. aeruginosa. Further analysis demonstrated that P-CA-Lipo improved the bacterial uptake of CA and enhanced its antibacterial effect. It was also confirmed that P-Lipo could neutralize the LPS to avoid the inflammatory responses and inhibit the release of proinflammatory cytokines in both macrophages and mice. Finally, P-CA-Lipo inhibited E. coli-induced skin damage and death in mice and showed good biocompatibility. CONCLUSION: The P-Lipo could target E. coli by binding with LPS and enhancing the delivery and internalization of CA. In addition, P-Lipo could adsorb free LPS synergistically, thus promoting the infection management. We believe that this strategy can provide innovative insights into antibacterial agent delivery for the treatment of persistent and severe bacterial infections.


Subject(s)
Escherichia coli , Liposomes , Acrolein/analogs & derivatives , Animals , Bacteria , Mice
13.
ACS Nano ; 15(3): 4173-4185, 2021 03 23.
Article in English | MEDLINE | ID: mdl-33606516

ABSTRACT

Antivirulence therapy by cell membrane coated nanoparticles has shown promise against bacterial infections. However, current approaches remain unsatisfactory when facing Escherichia coli (E. coli) infections, since the E. coli secretes multiple bacterial toxins including endotoxins and exotoxins that are challenging to eliminate simultaneously. What is worse, the absorptive scavengers normally rely on random contact of the diffuse toxins, which is not efficient. For the current cell membrane coated platform, the single type of cell membrane cannot fully meet the detoxing requirement facing multiple toxins. To address these problems, a polymyxin B (PMB)-modified, red blood cell (RBC)-mimetic hybrid liposome (P-RL) was developed. The P-RL was fabricated succinctly through fusion of PMB-modified lipids and the RBC membranes. By the strong interaction between PMB and the E. coli membrane, P-RL could attach and anchor to the E. coli; attributed to the fused RBC membrane and modified PMB, the P-RL could then efficiently neutralize both endotoxins and exotoxins from the toxin fountainhead. In vitro and in vivo results demonstrated the P-RL had a significant anchoring effect to E. coli. Moreover, compared with the existing RBC vesicles or PMB-modified liposomes, P-RL exhibited a superior therapeutic effect against RBC hemolysis, macrophage activation, and a mixed-toxin infection in mice. Potently, P-RL could inhibit E. coli O157:H7-induced skin damage, intestinal infection, and mouse death. Overall, the P-RL could potentially improve the detoxing efficiency and markedly expand the detoxification spectrum of current antivirulence systems, which provides different insights into drug-resistant E. coli treatment.


Subject(s)
Escherichia coli Infections , Escherichia coli O157 , Animals , Endotoxins , Erythrocyte Membrane , Escherichia coli Infections/drug therapy , Liposomes , Mice
14.
Life Sci ; 260: 118393, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32898527

ABSTRACT

AIMS: The aim of this study was to investigate the mechanism of pro-inflammatory phenotype transformation of microglia induced by oxygen-glucose deprivation (OGD), and how salvianolate regulates the polarization of microglia to exert neuroprotective effects. MAIN METHODS: The immunofluorescence and western blot experiments were used to verify the injury effect on neuronal cells after inflammatory polarization of microglia. Secondly, immunofluorescence staining and western blot were analyzed inflammatory phenotype of microglia and TLR4 signaling pathway after salvianolate treatment. RT-qPCR and ELISA assays were showed the levels of RNA and proteins of inflammatory factors in microglia. Finally, flow cytometry and western blot assay proved that salvianolate had a certain protective effect on neuronal injury after inhibiting the phenotype of microglia. KEY FINDINGS: The OGD condition could promote inflammation and activate of TLR4 signal pathway in microglia, and the polarization of microglia triggered caspase-3 signal pathway of neuronal cell. The optimal concentrations of salvianolate were incubated with microglia under OGD condition, which could reduce the reactive oxygen species (ROS) expression (P = 0.002) and also regulate the activity of SOD, CAT and GSH-px enzymes (P < 0.05). Moreover, salvianolate treatment could inhibit TLR4 signal pathway (P = 0.012), suppress the pro-inflammatory phenotype of microglia in OGD condition (P = 0.018), and reduce the expression of IL-6 and TNF-α (P < 0.05). Finally, neuronal damage induced by microglia under OGD condition was reversed after administration of the microglia supernatant after salvianolate treatment. SIGNIFICANCE: Salvianolate, as an antioxidant, plays a neuroprotective role by inhibiting the pro-inflammatory phenotype and decreasing the expression of ROS in microglia.


Subject(s)
Apoptosis , Glucose/deficiency , Microglia/drug effects , Neurons/drug effects , Neuroprotective Agents/pharmacology , Oxygen/metabolism , Plant Extracts/pharmacology , Animals , Cells, Cultured , Cytokines/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Inflammation/pathology , Mice , Microglia/metabolism , Microglia/pathology , Neurons/metabolism , Neurons/pathology , Reactive Oxygen Species/metabolism , Signal Transduction , Toll-Like Receptor 4/metabolism
15.
Acta Pharm Sin B ; 10(8): 1414-1425, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32963940

ABSTRACT

HuR (human antigen R), an mRNA-binding protein responsible for poor prognosis in nearly all kinds of malignancies, is a potential anti-tumor target for drug development. While screening HuR inhibitors with a fluorescence polarization (FP) based high-throughput screening (HTS) system, the clinically used drug eltrombopag was identified. Activity of eltrombopag on molecular level was verified with FP, electrophoretic mobility shift assay (EMSA), simulation docking and surface plasmon resonance (SPR). Further, we showed that eltrombopag inhibited in vitro cell proliferation of multiple cancer cell lines and macrophages, and the in vivo anti-tumor activity was also demonstrated in a 4T1 tumor-bearing mouse model. The in vivo data showed that eltrombopag was efficient in reducing microvessels in tumor tissues. We then confirmed the HuR-dependent anti-angiogenesis effect of eltrombopag in 4T1 cells and RAW264.7 macrophages with qRT-PCR, HuR-overexpression and HuR-silencing assays, RNA stability assays, RNA immunoprecipitation and luciferase assays. Finally, we analyzed the in vitro anti-angiogenesis effect of eltrombopag on human umbilical vein endothelial cells (HUVECs) mediated by macrophages with cell scratch assay and in vitro Matrigel angiogenesis assay. With these data, we revealed the HuR-dependent anti-angiogenesis effect of eltrombopag in breast tumor, suggesting that the existing drug eltrombopag may be used as an anti-cancer drug.

16.
Eur J Pharmacol ; 872: 172944, 2020 Apr 05.
Article in English | MEDLINE | ID: mdl-31978424

ABSTRACT

Salvianolate has been widely used for the treatment of cerebrovascular diseases. However, the detailed molecular mechanism of how it alleviates cerebral ischaemia-reperfusion injury is not well understood. In the present study, we investigated the neuroprotective effects of salvianolate in acute cerebral infarction using the PC12 cell oxygen-glucose deprivation (OGD) model in vitro and the rat transient middle cerebral artery occlusion (MCAO) model in vivo. The results showed that the salvianolate significantly reduced the level of reactive oxygen species and inhibited the Caspase-3 signalling pathway in vitro; at the same time, in vivo experiments showed that salvianolate obviously reduced the infarct area (12.9%) and repaired cognitive function compared with the model group (28.28%). In conclusion, our data demonstrated that the salvianolate effectively alleviated cerebral ischaemia-reperfusion injury via suppressing the Caspase-3 signalling pathway.


Subject(s)
Caspase 3/metabolism , Cerebral Infarction/drug therapy , Neuroprotective Agents/pharmacology , Plant Extracts/pharmacology , Reperfusion Injury/prevention & control , Animals , Apoptosis/drug effects , Behavior Observation Techniques , Behavior, Animal/drug effects , Behavior, Animal/physiology , Brain/drug effects , Brain/pathology , Brain/physiopathology , Cerebral Infarction/complications , Cerebral Infarction/pathology , Cerebral Infarction/physiopathology , Cognition/drug effects , Cognition/physiology , Disease Models, Animal , Humans , Male , Neuroprotective Agents/therapeutic use , Plant Extracts/therapeutic use , Rats , Reactive Oxygen Species/metabolism , Reperfusion Injury/etiology , Reperfusion Injury/pathology , Reperfusion Injury/physiopathology , Signal Transduction/drug effects
17.
ACS Nano ; 13(4): 4148-4159, 2019 04 23.
Article in English | MEDLINE | ID: mdl-30855941

ABSTRACT

Pore-forming toxins (PFTs) are the most common bacterial virulence proteins and play a significant role in the pathogenesis of bacterial infections; thus, PFTs are an attractive therapeutic target in bacterial infections. Inspired by the pore-forming process and mechanism of PFTs, we designed an integrated hybrid nanovesicle-the erythroliposome (called the RM-PL)-for PFT detoxification by fusing natural red blood cell (RBC) membranes with artificial lipid membranes. The lipid and RBC membranes were mutually beneficial when integrated into a hybrid nanovesicle structure. The RBC membrane endowed RM-PLs with the capacity for detoxification, while the PEGylated lipid membrane stabilized the RM-PLs and greatly improved the detoxification capacity of the RBC membrane. With α-hemolysin (Hlα) as a model PFT, we demonstrated that RM-PLs could not only significantly reduce the toxicity of Hlα to erythrocytes in vitro but also effectively sponge Hlα in vivo and rescue mice from Hlα-induced damage. Moreover, the high detoxification capacity of RM-PLs was shown to be partly related to the expression of the Hlα receptor protein, a disintegrin and metalloproteinase domain-containing protein 10 on the RBC membrane. Consequently, as a component integrating natural and artificial materials, the erythroliposome nanoplatform inspires potential strategies for antivirulence therapy.


Subject(s)
Erythrocyte Membrane/metabolism , Hemolysin Proteins/isolation & purification , Liposomes/therapeutic use , Staphylococcal Infections/therapy , Staphylococcus aureus/physiology , Animals , Hemolysin Proteins/metabolism , Liposomes/metabolism , Membrane Lipids/metabolism , Membrane Lipids/therapeutic use , Membranes, Artificial , Mice, Inbred BALB C , Mice, Inbred ICR , Mice, Nude , Staphylococcal Infections/metabolism
18.
Nano Lett ; 19(1): 124-134, 2019 01 09.
Article in English | MEDLINE | ID: mdl-30521345

ABSTRACT

The targeted delivery of therapeutics to sites of rheumatoid arthritis (RA) has been a long-standing challenge. Inspired by the intrinsic inflammation-targeting capacity of macrophages, a macrophage-derived microvesicle (MMV)-coated nanoparticle (MNP) was developed for targeting RA. The MMV was efficiently produced through a novel method. Cytochalasin B (CB) was applied to relax the interaction between the cytoskeleton and membrane of macrophages, thus stimulating MMV secretion. The proteomic profile of the MMV was analyzed by iTRAQ (isobaric tags for relative and absolute quantitation). The MMV membrane proteins were similar to those of macrophages, indicating that the MMV could exhibit bioactivity similar to that of RA-targeting macrophages. A poly(lactic- co-glycolic acid) (PLGA) nanoparticle was subsequently coated with MMV, and the inflammation-mediated targeting capacity of the MNP was evaluated both in vitro and in vivo. The in vitro binding of MNP to inflamed HUVECs was significantly stronger than that of the red blood cell membrane-coated nanoparticle (RNP). Compared with bare NP and RNP, MNP showed a significantly enhanced targeting effect in vivo in a collagen-induced arthritis (CIA) mouse model. The targeting mechanism was subsequently revealed according to the proteomic analysis, indicating that Mac-1 and CD44 contributed to the outstanding targeting effect of the MNP. A model drug, tacrolimus, was encapsulated in MNP (T-RNP) and significantly suppressed the progression of RA in mice. The present study demonstrates MMV as a promising and rich material, with which to mimic macrophages, and demonstrates that MNP is an efficient biomimetic vehicle for RA targeting and treatment.


Subject(s)
Arthritis, Experimental/drug therapy , Arthritis, Rheumatoid/drug therapy , Nanoparticles/administration & dosage , Proteomics , Animals , Arthritis, Rheumatoid/pathology , Cytochalasin B/chemistry , Disease Models, Animal , Erythrocytes/chemistry , Erythrocytes/drug effects , Gene Expression Regulation/drug effects , Human Umbilical Vein Endothelial Cells , Humans , Hyaluronan Receptors/genetics , Macrophage-1 Antigen/genetics , Macrophages/chemistry , Mice , Nanoparticles/chemistry , Polyesters/chemistry , Polylactic Acid-Polyglycolic Acid Copolymer/chemistry , Tacrolimus
19.
Stem Cell Rev Rep ; 6(4): 523-31, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20680520

ABSTRACT

Cerebral ischemia induces death of all neural cell types within the region affected by the loss of blood flow. We have shown that administering human umbilical cord blood cells after a middle cerebral artery occlusion in rats significantly reduces infarct size, presumably by rescuing cells within the penumbra. In this study we examined whether the cord blood cells enhanced astrocyte survival in an in vitro model of hypoxia with reduced glucose availability. Primary astrocyte cultures were incubated for 2 h in no oxygen (95% N, 5% CO(2)) and low glucose (1% compared to 4.5%) media. Cord blood mononuclear cells were added to half the cultures at the beginning of hypoxia. Astrocyte viability was determined using fluorescein diacetate/propidium iodide (FDA/PI) labeling and cytokine production by the astrocytes measured using ELISA. In some studies, T cells, B cells or monocytes/macrophages isolated from the cord blood mononuclear fraction with magnetic antibody cell sorting (MACS) were used instead to determine which cellular component of the cord blood mononuclear fraction was responsible for the observed effects. Co-culturing mononuclear cord blood cells with astrocytes during hypoxia stimulated production of IL-6 and IL-10 during hypoxia. The cord blood T cells decreased survival of the astrocytes after hypoxia but had no effect on the examined cytokines. Our data demonstrate that the tested cord blood fractions do not enhance astrocyte survival when delivered individually, suggesting there is either another cellular component that is neuroprotective or an interaction of all the cells is essential for protection.


Subject(s)
Astrocytes/cytology , Brain Ischemia/metabolism , Cytokines/metabolism , Fetal Blood/cytology , Animals , Astrocytes/metabolism , Cell Survival/physiology , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Humans , Hypoxia/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Interleukin-1beta/metabolism , Interleukin-6/metabolism , Rats
20.
Neurourol Urodyn ; 29(8): 1451-7, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20127836

ABSTRACT

AIMS: Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine found pre-formed in the urothelium. During inflammation, MIF is released into the bladder lumen and bladder MIF mRNA is upregulated. Since MIF also has tautomerase activity and blocking tautomerase activity also blocks MIF's biological activity, we hypothesized that blocking MIF's tautomerase activity would prevent bladder inflammation. Therefore, we examined the effects of a MIF tautomerase inhibitor (ISO-1; also blocks biological activity) on cyclophosphamide (CYP)-induced cystitis in mice. METHODS: Mice receiving CYP (300 mg/kg; i.p.) to induce cystitis or saline (control) were treated either with ISO-1 (20 mg/kg; i.p.; daily) or vehicle (20% DMSO; i.p.; daily) for 2 days. After 2 days, micturition volume and frequency in awake mice were recorded and also mechanical sensitivity to abdominal stimulation using von Frey monofilaments. Bladders were collected under anesthesia and examined histologically, nerve growth factor levels were assayed in bladder homogenates, and production of inflammatory cytokines in the bladder was determined using a targeted array. RESULTS: CYP treatment resulted in decreased micturition volume, increased frequency, decreased threshold, increased histological signs of cystitis, increased bladder NGF levels and production of inflammatory cytokines when compared to the control group. Treatment with ISO-1 prevented or greatly decreased all these changes. CONCLUSION: Antagonizing MIF's activity with a systemic MIF tautomerase inhibitor was able to prevent or greatly reduced chemical cystitis in mice, thus indicating the MIF mediates bladder inflammation in this model. MIF represents a novel and important modulator of cystitis.


Subject(s)
Cystitis/prevention & control , Enzyme Inhibitors/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Isoxazoles/pharmacology , Macrophage Migration-Inhibitory Factors/antagonists & inhibitors , Urinary Bladder/drug effects , Animals , Cyclophosphamide , Cystitis/chemically induced , Cystitis/enzymology , Cystitis/immunology , Cystitis/physiopathology , Cytokines/metabolism , Disease Models, Animal , Female , Hyperalgesia/chemically induced , Hyperalgesia/prevention & control , Inflammation Mediators/metabolism , Intramolecular Oxidoreductases/metabolism , Macrophage Migration-Inhibitory Factors/metabolism , Male , Mechanotransduction, Cellular/drug effects , Mice , Mice, Inbred C57BL , Nerve Growth Factor/metabolism , Sensory Thresholds , Urinary Bladder/enzymology , Urinary Bladder/immunology , Urinary Bladder/physiopathology , Urination/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...