Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Front Genet ; 13: 842127, 2022.
Article in English | MEDLINE | ID: mdl-35368659

ABSTRACT

Therapeutic antibodies play a crucial role in the treatment of various diseases. However, the success rate of antibody drug development is low partially because of unfavourable biophysical properties of antibody drug candidates such as the high aggregation tendency, which is mainly driven by hydrophobic interactions of antibody molecules. Therefore, early screening of the risk of hydrophobic interaction of antibody drug candidates is crucial. Experimental screening is laborious, time-consuming, and costly, warranting the development of efficient and high-throughput computational tools for prediction of hydrophobic interactions of therapeutic antibodies. In the present study, 131 antibodies with hydrophobic interaction experiment data were used to train a new support vector machine-based ensemble model, termed SSH2.0, to predict the hydrophobic interactions of antibodies. Feature selection was performed against CKSAAGP by using the graph-based algorithm MRMD2.0. Based on the antibody sequence, SSH2.0 achieved the sensitivity and accuracy of 100.00 and 83.97%, respectively. This approach eliminates the need of three-dimensional structure of antibodies and enables rapid screening of therapeutic antibody candidates in the early developmental stage, thereby saving time and cost. In addition, a web server was constructed that is freely available at http://i.uestc.edu.cn/SSH2/.

2.
Interdiscip Sci ; 12(1): 109-116, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31741225

ABSTRACT

The argonaute protein (Ago) exists in almost all organisms. In eukaryotes, it functions as a regulatory system for gene expression. In prokaryotes, it is a type of defense system against foreign invasive genomes. The Ago system has been engineered for gene silencing and genome editing and plays an important role in biological studies. With an increasing number of genomes and proteomes of various microbes becoming available, computational tools for identifying and annotating argonaute proteins are urgently needed. We introduce AGONOTES (Argonaute Notes). It is a web service especially designed for identifying and annotating Ago. AGONOTES uses the BLASTP similarity search algorithm to categorize all submitted proteins into three groups: prokaryotic argonaute protein (pAgo), eukaryotic argonaute protein (eAgo), and non-argonaute protein (non-Ago). Argonaute proteins can then be aligned to the corresponding standard set of Ago sequences using the multiple sequence alignment program MUSCLE. All functional domains of Ago can further be curated from the alignment results and visualized easily through Bio::Graphic modules in the BioPerl bundle. Compared with existing tools such as CD-Search and available databases such as UniProt and AGONOTES showed a much better performance on domain annotations, which is fundamental in studying the new Ago. AGONOTES can be freely accessed at http://i.uestc.edu.cn/agonotes/. AGONOTES is a friendly tool for annotating Ago domains from a proteome or a series of protein sequences.


Subject(s)
Argonaute Proteins/metabolism , Computational Biology/methods , Robotics/methods , Algorithms , Amino Acid Sequence , Argonaute Proteins/genetics , Prokaryotic Cells/metabolism
3.
IEEE/ACM Trans Comput Biol Bioinform ; 16(4): 1313-1315, 2019.
Article in English | MEDLINE | ID: mdl-28186905

ABSTRACT

The CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated proteins) adaptive immune systems are discovered in many bacteria and most archaea. These systems are encoded by cas (CRISPR-associated) operons that have an extremely diverse architecture. The most crucial step in the depiction of cas operons composition is the identification of cas genes or Cas proteins. With the continuous increase of the newly sequenced archaeal and bacterial genomes, the recognition of new Cas proteins is becoming possible, which not only provides candidates for novel genome editing tools but also helps to understand the prokaryotic immune system better. Here, we describe HMMCAS, a web service for the detection of CRISPR-associated structural and functional domains in protein sequences. HMMCAS uses hmmscan similarity search algorithm in HMMER3.1 to provide a fast, interactive service based on a comprehensive collection of hidden Markov models of Cas protein family. It can accurately identify the Cas proteins including those fusion proteins, for example the Cas1-Cas4 fusion protein in Candidatus Chloracidobacterium thermophilum B (Cab. thermophilum B). HMMCAS can also find putative cas operon and determine which type it belongs to. HMMCAS is freely available at http://i.uestc.edu.cn/hmmcas.


Subject(s)
CRISPR-Cas Systems , Computational Biology/methods , Software , Acidobacteria/genetics , Algorithms , Archaea/genetics , Archaeal Proteins/chemistry , Bacteria/genetics , Bacterial Proteins/chemistry , Genome, Archaeal , Genome, Bacterial , Internet , Markov Chains , Methanocaldococcus/genetics , Mimiviridae/genetics , Operon , Phylogeny , Protein Domains , Proteome , Proteomics
4.
Database (Oxford) ; 20182018 01 01.
Article in English | MEDLINE | ID: mdl-29688378

ABSTRACT

Database URL: The BDB database is available at http://immunet.cn/bdb.


Subject(s)
Databases, Bibliographic , Peptide Library
5.
Biomed Res Int ; 2017: 5761517, 2017.
Article in English | MEDLINE | ID: mdl-29445741

ABSTRACT

Polystyrene surface-binding peptides (PSBPs) are useful as affinity tags to build a highly effective ELISA system. However, they are also a quite common type of target-unrelated peptides (TUPs) in the panning of phage-displayed random peptide library. As TUP, PSBP will mislead the analysis of panning results if not identified. Therefore, it is necessary to find a way to quickly and easily foretell if a peptide is likely to be a PSBP or not. In this paper, we describe PSBinder, a predictor based on SVM. To our knowledge, it is the first web server for predicting PSBP. The SVM model was built with the feature of optimized dipeptide composition and 87.02% (MCC = 0.74; AUC = 0.91) of peptides were correctly classified by fivefold cross-validation. PSBinder can be used to exclude highly possible PSBP from biopanning results or to find novel candidates for polystyrene affinity tags. Either way, it is valuable for biotechnology community.


Subject(s)
Peptides/chemistry , Polystyrenes/chemistry , Software , Amino Acid Sequence/genetics , Biophysical Phenomena , Internet , Protein Binding , Signal Transduction , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...