Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 45
Filter
Add more filters










Publication year range
1.
Nanomaterials (Basel) ; 14(12)2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38921901

ABSTRACT

A novel nano-laminated GdB2C2 material was successfully synthesized using GdH2, B4C, and C via an in situ solid-state reaction approach for the first time. The formation process of GdB2C2 was revealed based on the microstructure and phase evolution investigation. Purity of 96.4 wt.% GdB2C2 was obtained at a low temperature of 1500 °C, while a nearly fully pure GdB2C2 could be obtained at a temperature over 1700 °C. The as-obtained GdB2C2 presented excellent thermal stability at a high temperature of 2100 °C in Ar atmosphere due to the stable framework formed by the high-covalence four-member and eight-member B-C rings in GdB2C2. The GdB2C2 material synthesized at 1500 °C demonstrated a remarkably low minimum reflection loss (RLmin) of -47.01 dB (3.44 mm) and a broad effective absorption bandwidth (EAB) of 1.76 GHz. The possible electromagnetic wave absorption (EMWA) mechanism could be ascribed to the nano-laminated structure and appropriate electrical conductivity, which facilitated good impedance matching, remarkable conduction loss, and interfacial polarization, along with the reflection and scattering of electromagnetic waves at multiple interfaces. The GdB2C2, with excellent EMWA performance as well as remarkable ultra-high-temperature thermal stability, could be a promising candidate for the application of EMWA materials in extreme ultra-high temperatures.

2.
Environ Sci Pollut Res Int ; 31(11): 17115-17123, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38332419

ABSTRACT

The unregulated dismantling and improper disposal of electronic waste lead to severe soil contamination by polychlorinated biphenyls (PCBs). Constructed wetlands (CWs) play an important role in PCBs removal as a result of the co-existence of anaerobic and aerobic conditions. However, the effects and mechanisms of different PCBs concentrations in soils on plant uptake and PCBs degradation within CWs are unclear. We evaluated the uptake and degradation of PCBs at different concentrations by Myriophyllum aquaticum (Vell.) Verdc. Planting significantly increased PCBs removal by 8.70% (p < 0.05) in soils with 1500 and 2500 µg/kg PCBs, whereas no significant effect was observed at 500 and 1000 µg/kg. PCBs levels did not significantly affect plant growth and PCBs accumulation. The contribution of plant uptake to PCBs removal was only 0.10-0.12%, indicating that microbial degradation was the dominant pathway for PCBs removal after planting with M. aquaticum. In the treatments with PCBs ≥ 1500 µg/kg, M. aquaticum increased the microbial population, altered the microbial community structure and enriched PCB-degrading bacteria. Functional prediction revealed that microbes in M. aquaticum rhizosphere secreted more peroxidase and glycosyltransferase than non-plant control, which were likely involved in PCBs metabolism.


Subject(s)
Polychlorinated Biphenyls , Saxifragales , Polychlorinated Biphenyls/analysis , Wetlands , Saxifragales/metabolism , Bacteria/metabolism , Soil
3.
Environ Int ; 180: 108215, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37741005

ABSTRACT

Rhizoremediation is a promising remediation technology for the removal of soil persistent organic pollutants (POPs), especially benzo[a]pyrene (BaP). However, our understanding of the associations among rhizospheric soil metabolites, functional microorganisms, and POPs degradation in different plant growth stages is limited. We combined stable-isotope probing (SIP), high-throughput sequencing, and metabolomics to analyze changes in rhizospheric soil metabolites, functional microbes, and BaP biodegradation in the early growth stages (tillering, jointing) and later stage (booting) of ryegrass. Microbial community structures differed significantly among growth stages. Metabolisms such as benzenoids and carboxylic acids tended to be enriched in the early growth stage, while lipids and organic heterocyclic compounds dominated in the later stage. From SIP, eight BaP-degrading microbes were identified, and most of which such as Ilumatobacter and Singulisphaera were first linked with BaP biodegradation. Notably, the relationship between the differential metabolites and BaP degradation efficiency further suggested that BaP-degrading microbes might metabolize BaP directly to produce benzenoid metabolites (3-hydroxybenzo[a]pyrene), or utilize benzenoids (phyllodulcin) to stimulate the co-metabolism of BaP in early growth stage; some lipids and organic acids, e.g. 1-aminocyclopropane-1-carboxylic acid, might provide nutrients for the degraders to promote BaP metabolism in later stage. Accordingly, we determined that certain rhizospheric metabolites might regulate the rhizospheric microbial communities at different growth stages, and shift the composition and diversity of BaP-degrading bacteria, thereby enhancing in situ BaP degradation. Our study sheds light on POPs rhizoremediation mechanisms in petroleum-contaminated soils.

4.
J Hazard Mater ; 448: 130935, 2023 04 15.
Article in English | MEDLINE | ID: mdl-36860072

ABSTRACT

The diffusive gradients in thin films (DGT) technique is an excellent method for investigating the dynamic processes of antibiotics in soils. However, whether it is applicable in antibiotic bioavailability assessment is yet to be disclosed. This study employed DGT to determine the antibiotic bioavailability in soil, and compared the results with plant uptake, soil solutions, and solvent extraction methods. DGT exhibited predictive capability for plant taking in antibiotics proved by the significant linear relationship between the DGT based concentration (CDGT) and antibiotic concentration in roots and shoots. Although the performance of soil solution was acceptable based on linear relationship analysis, its stability was weaker than DGT. The results based on plant uptake and DGT indicated the bioavailable antibiotic contents in different soils were inconsistent because of the distinct mobility and resupply of sulphonamides and trimethoprim in different soils, as represented by Kd and Rds, which were affected by soil properties. Plant species played an important role in antibiotic uptake and translocation. Antibiotic uptake by plants depends on antibiotic, plant and soil. These results confirmed the capability of DGT in determining antibiotic bioavailability for the first time. This work provided a simple and powerful tool for environmental risk evaluation of antibiotics in soils.


Subject(s)
Anti-Bacterial Agents , Soil , Biological Availability , Diffusion , Biological Transport
5.
Nanoscale Adv ; 4(21): 4597-4605, 2022 Oct 25.
Article in English | MEDLINE | ID: mdl-36341295

ABSTRACT

Nowadays the formation mechanism of anodic TiO2 nanotubes has attracted extensive attention. Field-assisted dissolution (TiO2 + 6F- + 4H+ → [TiF6]2- + 2H2O) has been considered as the causal link to the formation and growth of nanotubes. But it is hard for this theory to explain three stages of the current-time curve. Here, the anodization of titanium was studied by adding different concentrations of H3PO4 (0%, 4 wt%, 6 wt%, 8 wt%, and 10 wt%) in ethylene glycol containing the same concentration of NH4F (0.5 wt%). The results prove that under the action of the same concentration of NH4F, the growth rate of nanotubes decreases obviously with the increase of H3PO4 concentration, and the second stage of the current-time curve is also prolonged simultaneously. These experimental facts cannot be interpreted by field-assisted dissolution theory and the viscous flow model. Here, an anion layer formed by H3PO4 and the electronic current theory are ably used to explain these facts reasonably for the first time.

6.
Environ Int ; 170: 107629, 2022 12.
Article in English | MEDLINE | ID: mdl-36395556

ABSTRACT

Di-(2-ethylhexyl) phthalate (DEHP) is a dominant phthalic acid ester in the environment and commonly occurs at high concentration in agricultural soils. Its influence on the soil microbial community has been widely reported, while research related to its effects on microbial structure, function, and interactions in the rhizosphere, a microbial hotspot region in the terrestrial ecosystem, is still limited. This study investigated the response of microbes in the rhizosphere to DEHP contamination. DEHP reduced microbial quantity, shifted the microbial community structure, and enriched the soil bacteria with potential DEHP degraders. Although the rhizosphere can alleviate DEHP toxicity, DEHP still played an important role in microbial community construction in the rhizosphere. Interestingly, some microbes were influenced by the synergistic toxicity effect of DEHP addition and plant growth, and there were significant differences in their relative abundance and alpha diversity in soil treated with both DEHP and planting compared to soils with just DEHP spiking or planting. The genes related to cell motility, metabolism of terpenoids and polyketides, protein families, genetic information processing, and replication and repair pathways changed only in soil treated with both DEHP and planting further proved the existence of synergistic toxicity. Anyway, the impact of DEHP on microbial function in the rhizosphere was important with 52.42‰ of the genes being changed. The change in cell motility, biofilm formation, and genes related to the quorum sensing pathway might affect the relationship between microbes, which play a crucial role in ecosystem function. This was further proven by changes in the microbial co-occurrence pattern. Our results can benefit risk evaluation of DEHP to microbial community in the rhizosphere, which is important for the effective function of terrestrial ecosystems and soil health.


Subject(s)
Diethylhexyl Phthalate , Soil , Ecosystem , Diethylhexyl Phthalate/toxicity
7.
Environ Pollut ; 315: 120386, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36228847

ABSTRACT

Cyanobacterial bloom challenges the aquatic ecosystem and ecological restoration is an effective approach for cyanobacterial bloom control, but the change of aquatic community after ecological restoration is still unclear. Dianchi Lake is an eutrophic lake with frequent cyanobacterial blooms in China, and recent ecological restoration projects in Caohai (north part) have a satisfactory performance. In this study, we collected 249 water samples at 23 sites from Dianchi Lake to explore the relationships between water physicochemical variables and aquatic microbial communities. Water physicochemical variables in Waihai (south part) intensively changed along time, whereas those in Caohai did not. Photoautotrophic communities were significantly divergent between Caohai and Waihai. Waihai had a lower diversity of photoautotrophic community, containing higher abundance of Cyanophyceae (89.9%) than Caohai (42.7%). Nutrient level and Cyanophyceae only exhibited strong correlations in Wahai (p < 0.05). Redundancy analysis and microbial ecological network suggested that microbial communities in Caohai had a higher stability. Deterministic process dominated the microbial assembly (50-80% for bacteria and >90% for photoautotrophs), and particularly in Caohai. Our results unraveled that the structure and assembly of bacterial and photoautotrophic communities significantly changed after ecological restoration, offering valuable suggestions that photosynthetic diversity should be focused for other ecological restoration projects.


Subject(s)
Cyanobacteria , Lakes , Lakes/chemistry , Ecosystem , China , Water , Eutrophication
8.
J Hazard Mater ; 438: 129492, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35803192

ABSTRACT

Co-contamination of heavy metals and organic pollutants is widespread in the environment. Metal-tolerant/hyperaccumulating plants have the advantage of enhancing co-operation between plants and rhizospheric microbes under heavy metal stress, but the underlying mechanism remains unclear. In the present study, the effects of Elsholtzia splendens and Lolium perenne on the rhizospheric microbial community and degraders of phenanthrene (PHE) and polychlorinated biphenyls (PCBs) were investigated. The results showed E. splendens could tolerate high Cu concentrations, while L. perenne was sensitive to Cu toxicity. Although Cu played the most important role in microbial community construction, both E. splendens and L. perenne caused shifts in the rhizospheric microbial community. For PHE and PCB degradation, L. perenne was more efficient under low Cu concentrations, whereas E. splendens performed better under high Cu concentrations. This difference can be attributed to shifts in the degrader community and key degradation genes identified by stable isotope probing. Moreover, higher abundances of various genes for organic pollutant degradation were observed in the rhizosphere of E. splendens than L. perenne based on gene prediction under high Cu stress. Our study reveals underlying mechanism of the advantages of heavy metal-tolerant plants for organic pollutant removal in soils co-contaminated with heavy metals.


Subject(s)
Lamiaceae , Metals, Heavy , Phenanthrenes , Polychlorinated Biphenyls , Soil Pollutants , Biodegradation, Environmental , Copper/analysis , Lamiaceae/metabolism , Metals, Heavy/metabolism , Metals, Heavy/toxicity , Phenanthrenes/metabolism , Plant Roots/metabolism , Polychlorinated Biphenyls/metabolism , Soil Microbiology , Soil Pollutants/metabolism
9.
J Hazard Mater ; 438: 129466, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35803194

ABSTRACT

Biochar has been widely used for the remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated soil, but its mechanism of influencing PAH biodegradation remains unclear. Here, DNA-stable isotope probing coupled with high-throughput sequencing was employed to assess its influence on phenanthrene (PHE) degradation, the active PHE-degrading microbial community and PAH-degradation genes (PAH-RHDα). Our results show that both Low-BC and High-BC (soils amended with 1 % and 4 % w/w biochar, respectively) treatments significantly decreased PHE biodegradation and bioavailable concentrations with a dose-dependent effect compared to Non-BC treatment (soils without biochar). This result could be attributed to the immobilisation of PHE and alteration of the composition and abundance of the PHE-degrading microbial consortium by biochar. Active PHE degraders were identified, and those in the Non-BC, Low-BC and High-BC microcosms differed taxonomically. Sphaerobacter, unclassified Diplorickettsiaceae, Pseudonocardia, and Planctomyces were firstly linked with PHE biodegradation. Most importantly, the abundances of PHE degraders and PAH-RHDα genes in the 13C-enriched DNA fractions of biochar-amended soils were greatly attenuated, and were significantly positively correlated with PHE biodegradation. Our findings provide a novel perspective on PAH biodegradation mechanisms in biochar-treated soils, and expand the understanding of the biodiversity of microbes involved in PAH biodegradation in the natural environment.


Subject(s)
Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Biodegradation, Environmental , Charcoal , DNA , Phenanthrenes/metabolism , Polycyclic Aromatic Hydrocarbons/metabolism , Soil , Soil Microbiology , Soil Pollutants/metabolism
10.
Sci Total Environ ; 844: 157195, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-35810888

ABSTRACT

The combination of microbial reductive dechlorination and aerobic oxidation (RD-AO) process was proposed to be a promising strategy for extensive bioremediation of highly chlorinated polychlorinated biphenyls (PCBs). Nonetheless, experimental evidence on the impact of the RD on subsequent AO in anaerobic-aerobic two-stage treatment remains scarce. The present study applied stable-isotope probing (SIP) to explore the RD-AO mediated degradation of PCBs in an e-waste-contaminated soil. The RD-AO treatment resulted in 37.1 % and 48.2 % degradation of PCB180 and PCB9, respectively, while the PCB9 degradation efficiency decreased compared to the sole AO (81.2 %). The inhibition of PCB aerobic degradation might be caused by the alteration of aerobic bacterial community, which was proved by a higher abundance of anaerobic bacteria and a lower abundance of aerobic bacteria being observed in the aerobic stage of RD-AO. Further evidence was obtained using DNA-SIP that the anaerobic stage altered the PCB degraders' community structures and changed three of the five degraders. There were four lineages (Arenimonas, Steroidobacter, Sulfurifustis, and Thermoanaerobacterales) identified as PCB degraders for the first time. Interestingly, three of them were found in RD-AO microcosm, suggesting that anaerobic-aerobic two-stage treatment can recruit novel bacteria involved in PCBs aerobic degradation. The present study provided novel insight into the synergistic integration of anaerobic and aerobic processes for extensive degradation of highly chlorinated PCBs.


Subject(s)
Electronic Waste , Polychlorinated Biphenyls , Anaerobiosis , Bacteria, Aerobic/metabolism , Bacteria, Anaerobic/metabolism , Biodegradation, Environmental , Polychlorinated Biphenyls/metabolism , Soil
11.
Front Med (Lausanne) ; 9: 809787, 2022.
Article in English | MEDLINE | ID: mdl-35186996

ABSTRACT

PURPOSE: This cross-sectional study investigated the association between serum 25-hydroxyvitamin D [25(OH)D] concentration and myopia in two groups of Chinese children aged 6-14 years from different geographic and economic locations. METHODS: A total of 294 children from a lowland area and 89 from a highland area were enrolled as two groups of study subjects. The visual acuity, ocular biometry, and automated refraction were measured. The serum level of 25(OH)D was determined by chemiluminescence immunoassay. Near vision and outdoor exposure durations were assessed with a questionnaire interview. Data were analyzed for differences using Chi-square and Wilcoxon rank sum tests. The risk factors were evaluated using logistic regression analysis. RESULTS: We found that the serum level of 25(OH)D of the subjects from lowland area was 20.9 ng/mL which was higher than that of subjects from highland area (16.9 ng/mL). The median spherical equivalent refraction (SER) was -0.25 diopters(D) in lowland subjects and -0.63D in highland subjects. The prevalence of myopia was 45.2% in lowland subjects and 55.1% in highland subjects. The average axial length was similar, 23.6 mm and 23.1 mm in lowland and highland subjects, respectively. We found no statistical difference between the average SER and serum 25(OH)D concentration in subjects of either lowland or highland area. The ratio of myopia to non-myopia was also similar in subjects with three levels (sufficient, deficient, and insufficient) of serum 25(OH)D in these two areas. CONCLUSIONS: There is no association between serum 25(OH)D concentration and myopia in the 6-14 years old Chinese children.

12.
J Hazard Mater ; 421: 126768, 2022 01 05.
Article in English | MEDLINE | ID: mdl-34365232

ABSTRACT

This study provides new knowledge on the mobility, behavior, and partitioning of 17 perfluoroalkyl substances (PFASs) in the water-sediment-plant system along the Dongzhulong and Xiaoqing Rivers. The fate of PFASs in these rivers is also discussed. The study area is affected by the industrial production of perfluorooctanoic acid (PFOA). The ∑PFASs in water and sediments close to the industrial discharge were 84,000 ± 2000 ng/L and 2300 ± 200 ng/g dw, respectively, with the concentrations decreasing along the river due to dilution. PFOA was the dominant compound (74-97% of the ∑PFASs), although other PFASs were identified close to urban areas. Principal component analysis and solid-liquid distribution coefficients revealed that long-chain PFASs accumulated in the sediment whereas short-chain PFASs remained in the water all along the river. PFASs were taken up by plants and remobilized to different plant compartments according to shoot concentration factors (SCFs), root concentration factors (RCF), and transfer factors (TFs). Among the four plant species studied, floating plants absorbed high levels of PFASs, while rooted species translocated short-chain PFASs from the roots to the shoots. Therefore, floating species, due to their high uptake capacity and large proliferation rate, could eventually be used for phytoremediation.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , China , Environmental Monitoring , Fluorocarbons/analysis , Rivers , Water , Water Pollutants, Chemical/analysis
13.
Sci Total Environ ; 810: 152202, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34890682

ABSTRACT

Benzo[a]pyrene (BaP) is a typical high-molecular-weight PAH with carcinogenicity. Rhizoremediation is commonly applied to remove soil BaP, but its mechanism remains unclear. The role of inducers in root exudates in BaP rhizoremediation is rarely studied. Here, to address this problem, we firstly investigated the effect of the inducer salicylic acid on BaP rhizoremediation, rhizosphere BaP degraders, and PAH degradation-related genes by combining DNA-stable-isotope-probing, high-throughput sequencing, and gene function prediction. BaP removal in the rhizosphere was significantly increased by stimulation with salicylic acid, and the rhizosphere BaP-degrading microbial community structure was significantly changed. Fourteen microbes were responsible for the BaP metabolism, and most degraders, e.g. Aeromicrobium and Myceligenerans, were firstly linked with BaP biodegradation. The enrichment of the PAH-ring hydroxylating dioxygenase (PAH-RHD) gene in the heavy fractions of all 13C-treatments further indicated their involvement in the BaP biodegradation, which was also confirmed by the enrichment of dominant PAH degradation-related genes (e.g. PAH dioxygenase and protocatechuate 3,4-dioxygenase genes) based on gene function prediction. Overall, our study demonstrates that salicylic acid can enhance the rhizosphere BaP biodegradation by altering the community structure of rhizosphere BaP-degrading bacteria and the abundance of PAH degradation-related genes, which provides new insights into BaP rhizoremediation mechanisms in petroleum-contaminated sites.


Subject(s)
Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Benzo(a)pyrene , Biodegradation, Environmental , DNA , Isotopes , Polycyclic Aromatic Hydrocarbons/analysis , Rhizosphere , Salicylic Acid , Soil Microbiology
14.
Environ Int ; 155: 106591, 2021 10.
Article in English | MEDLINE | ID: mdl-33933901

ABSTRACT

Organophosphate esters (OPEs) are normally used as flame retardants, plasticizers and lubricants, but have become environmental pollutants. Because OPEs are normally present alongside heavy metals in soils, the effects of interactions between OPEs and heavy metals on plant uptake of OPEs need to be determined. In this study, we investigated the effects of OPEs chemical structure, plant cultivar and copper (Cu) on the uptake and translocation of OPEs by plants. The bioaccumulation of OPEs varied among plant cultivars. They were preferentially enriched in carrot, with the lowest concentrations observed in maize. OPEs with electron-ring substituents (ER-OPEs) exhibited a higher potential for root uptake than did OPEs with open-chain substituents (OC-OPEs), which could be attributed to the higher sorption of ER-OPEs onto root charged surfaces. This was explained by the stronger noncovalent interactions with the electron-rich structure of ER-OPEs. The presence of Cu slightly reduced the distinct difference in the ability of roots to take up OC-OPEs and ER-OPEs. This was explained by the interactions of Cu ions with the electron-rich structure of ER-OPEs, which suppressed the sorption of ER-OPEs on the root surface. A negative relationship between the logarithms of the translocation factor and octanol-water partition coefficient (Kow) was observed in treatments with either OPEs only or OPEs + Cu, implying the significant role of hydrophobicity in the OPEs acropetal translocation. The results will improve our understanding of the uptake and translocation of OPEs by plant cultivars as well as how the process is affected by the chemical structure of OPEs and Cu, leading to improvements in the ecological risk assessment of OPEs in the food chain.


Subject(s)
Copper , Flame Retardants , China , Environmental Monitoring , Esters , Organophosphates , Plant Structures
15.
Environ Int ; 156: 106642, 2021 11.
Article in English | MEDLINE | ID: mdl-34004449

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) are ubiquitous in the environment but pose potential risks to ecosystems and human health. The soil-plant system plays an important role in the bioaccumulation of PFASs. Because most PFASs in the natural environment are anionic and amphiphilic (both lipophilic and hydrophilic), their sorption and accumulation behaviors differ from those of neutral organic and common ionic compounds. In this review, we discuss processes affecting the availability of PFASs in soil after analyzing the potential mechanisms underlying the sorption and uptake of PFASs in the soil-plant system. We also summarize the current knowledge on root uptake and translocation of PFASs in plants. We found that the root concentration factor of PFASs for plants grown in soil was not significantly correlated with hydrophobicity, whereas the translocation factor was significantly and negatively correlated with PFAS hydrophobicity regardless of whether plants were grown hydroponically or in soil. Further research on the cationic, neutral, and zwitterionic forms of diverse PFASs is urgently needed to comprehensively understand the environmental fates of PFASs in the soil-plant system. Additional research directions are suggested, including the development of more accurate models and techniques to evaluate the bioavailability of PFASs, the effects of root exudates and rhizosphere microbiota on the bioavailability and plant uptake of PFASs, and the roles of different plant organelles, lipids, and proteins in the accumulation of PFASs by plants.


Subject(s)
Fluorocarbons , Soil Pollutants , Ecosystem , Fluorocarbons/analysis , Humans , Plants , Soil
16.
J Agric Food Chem ; 69(7): 2062-2068, 2021 Feb 24.
Article in English | MEDLINE | ID: mdl-33555873

ABSTRACT

Plant uptake and translocation of perfluorooctane sulfonate (PFOS) are critical for food safety and raise major concerns. However, those processes are associated with many undisclosed mechanisms, especially when PFOS coexist with heavy metals. In this study, we investigated the effect of copper (Cu) on PFOS distribution in maize tissues by assessing the PFOS concentration and enantioselectivity. The presence of <100 µmol/L Cu exerted a limited effect on PFOS bioaccumulation, while >100 µmol/L Cu damaged the root cell membrane and increased root permeability, resulting in a higher PFOS concentration in roots. The suppression of acropetal translocation might be attributed to Cu inhibition of carrier proteins. The enantiomer fraction (EF) of 1m-PFOS at <100 µmol/L Cu was higher than that in a commercial product (0.5). Racemic PFOS was detected at >100 µmol/L Cu in roots and the EF variation changed from positive to negative in shoots. These EF results evidenced the existence of a protein-mediated uptake pathway. Besides, this study indicated the challenge of chiral signature application in PFOS source identification, given the effects of heavy metals and plants on PFOS enantioselectivity. The findings provide insight into PFOS bioaccumulation in plants cocontaminated with Cu and will facilitate environmental risk assessment.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Copper , Zea mays
17.
Environ Sci Technol ; 55(2): 962-973, 2021 01 19.
Article in English | MEDLINE | ID: mdl-33371686

ABSTRACT

Plants usually promote pollutant bioremediation by several mechanisms including modifying the diversity of functional microbial species. However, conflicting results are reported that root exudates have no effects or negative effects on organic pollutant degradation. In this study, we investigated the roles of ryegrass in phenanthrene degradation in soils using DNA stable isotope probing (SIP) and metagenomics to reveal a potential explanation for conflicting results among phytoremediation studies. Phenanthrene biodegradation efficiency was improved by 8% after 14 days of cultivation. Twelve and ten operational taxonomic units (OTUs) were identified as active phenanthrene degraders in non-rhizosphere and rhizosphere soils, respectively. The active phenanthrene degraders exhibited higher average phylogenetic distances in rhizosphere soils (0.33) than non-rhizosphere soils (0.26). The Ka/Ks values (the ratio of nonsynonymous to synonymous substitutions) were about 10.37% higher in the rhizosphere treatment among >90% of all key carbohydrate metabolism-related genes, implying that ryegrass may be an important driver of microbial community variation in the rhizosphere by relieving the carbohydrate metabolism pressure and improving the survival ability of r-strategy microbes. Most Ka/Ks values of root-exudate-related metabolism genes exhibited little change, except for fumarate hydratase that increased 13-fold in the rhizosphere compared to that in the non-rhizosphere treatment. The Ka/Ks values of less than 50% phenanthrene-degradation-related genes were affected, 30% of which increased and 70% behaved oppositely. Genes with altered Ka/Ks values had a low percentage and followed an inconsistent changing tendency, indicating that phenanthrene and its metabolites are not major factors influencing the active degraders. These results suggested the importance of carbohydrate metabolism, especially fumaric acid, in rhizosphere community shift, and hinted at a new hypothesis that the rhizosphere effect on phenanthrene degradation efficiency depends on the existence of active degraders that have competitive advantages in carbohydrate and fumaric acid metabolism.


Subject(s)
Lolium , Microbiota , Phenanthrenes , Soil Pollutants , Biodegradation, Environmental , Carbohydrate Metabolism , Phenanthrenes/analysis , Phylogeny , Plant Roots/chemistry , Rhizosphere , Soil Microbiology , Soil Pollutants/analysis
18.
J Hazard Mater ; 403: 123895, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33264959

ABSTRACT

Fungal bioremediation is a promising technique for the cleanup of sites contaminated with polycyclic aromatic hydrocarbons (PAHs). However, due to limited understanding of the composition and dynamics of the native PAH-degrading microorganisms in contaminated sites, its application has been difficult. In the present study, DNA stable-isotope probing was performed to identify indigenous phenanthrene (PHE)-degrading bacteria and determine their diversity during the fungal bioremediation process. The results showed a total of 14 operational taxonomic units (OTUs) enriched in the heavy DNA fractions, which were related to seven genera (Sphingomonas, Sphingobacterium, Acidovorax, Massilia, Flavobacterium, Cupriavidus, Aeromicrobium, and unclassified Chitinophagaceae). Along with enhanced efficiency of PHE removal, the number and diversity of indigenous PHE-degrading bacteria in soil bioaugmented with fungi were significantly increased. Furthermore, based on the results of linear model analysis, we found that PHE degraders affiliated with the genus Sphingomonas were significantly enriched during fungal bioremediation. Moreover, fungal bioaugmentation promoted indigenous functional Proteobacteria involved in PAH degradation through co-metabolism, suggesting that PAH biodegradation was attributable to cooperative metabolism by fungi and indigenous bacteria. Our findings provide new insights into the diversity of PHE-degrading communities and support a more comprehensive view of the fungal bioremediation process.


Subject(s)
Petroleum , Phenanthrenes , Polycyclic Aromatic Hydrocarbons , Soil Pollutants , Bacteria/genetics , Biodegradation, Environmental , Fungi/genetics , Phenanthrenes/analysis , Soil , Soil Microbiology , Soil Pollutants/analysis
19.
J Hazard Mater ; 403: 123990, 2021 02 05.
Article in English | MEDLINE | ID: mdl-33265028

ABSTRACT

Soil is a reservoir of environmental resistomes. Information about their distribution, profiles, and driving forces in undisturbed environments is essential for understanding and managing modern antibiotic resistance genes (ARGs) in human disturbed environments. However, knowledge about the resistomes in pristine soils is limited, particularly at national scale. Here, we conducted a national-scale investigation of soil resistomes in pristine forests across China. Although the antibiotics content was low and ranged from below limit of detection (LOD) to 0.290 µg/kg, numerous detected ARGs conferring resistance to major classes of modern antibiotics were identified and indicated forest soils as a potential source of resistance traits. ARGs ranged from 6.20 × 10-7 to 2.52 × 10-3 copies/16S-rRNA and were predominated by those resisting aminoglycoside and encoding deactivation mechanisms. Low abundance of mobile genetic elements (MGEs) and its scarcely positive connections with ARGs suggest the low potential of horizontal gene transfer. The geographic patterns of ARGs and ARG-hosts in pristine forest soils were mainly driven by soil physiochemical variables and followed a distance-decay relationship. This work focusing on pristine soils can provide valuably new information for our understanding of the ARGs in human disturbed environments.


Subject(s)
Anti-Bacterial Agents , Soil , China , Forests , Genes, Bacterial , Soil Microbiology
20.
Sci Total Environ ; 712: 136526, 2020 Apr 10.
Article in English | MEDLINE | ID: mdl-31945538

ABSTRACT

Tropical forests, under pressure from human activities, are important reservoirs of biodiversity and regulators of global biogeochemical cycles. Land-use and management are influential drivers of environmental change and ecosystem sustainability. However, only limited studies have analysed the impacts of planting age and vegetation type under land-use change on soil microbial community in tropical forests simultaneously. Here, we assessed soil bacterial community composition and diversity under different land-use in Hainan Province, China, using high-throughput sequencing combined with PICRUSt analysis. Land-use included natural forest, 5-year-old cropland, young (5-year-old) rubber tree plantation, and old (30-year-old) rubber tree plantation. Land-use changes altered the soil bacterial community composition but had a non-significant influence on alpha diversity (P > .05). We found that bacterial beta-diversity significantly decreased in young rubber tree plantation soils and cropland soils compared to natural forest as a control. In contrast, soil bacterial beta-diversity increased in old rubber tree plantation soils, indicating the effects of time since planting. There was no difference in microbial beta-diversity between soils from cropland and young rubber tree plantation. Soil bulk density and moisture, not pH, were the main environmental factors explaining the variability in microbial diversity. PICRUSt analysis of soil bacterial predicted gene abundances within metabolic pathways and indicated that land-use change altered soil functional traits, e.g., amino acid-related enzymes, ribosomes, DNA repair/recombination proteins and oxidative phosphorylation. Also, vegetation type, not planting age, had significant impacts on soil functional traits. Overall, planting age had the greatest influence on soil bacterial beta-diversity, while vegetation type was more crucial for soil functional traits (P < .05).


Subject(s)
Soil , Agriculture , China , Forests , Soil Microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...