ABSTRACT
BACKGROUND AND PURPOSE: Epilepsy is one of the most common diseases of the nervous system. Approximately one-third of epilepsy cases are drug-resistant, among which generalized-onset seizures are very common. The present study aimed to analyze abnormalities of the thalamocortical fiber pathways in each hemisphere of the brains of patients with drug-resistant generalized epilepsy. MATERIALS AND METHODS: The thalamocortical structural pathways were identified by diffusion tensor imaging (DTI) in 15 patients with drug-resistant generalized epilepsy and 16 gender/age-matched controls. The thalami of both groups were parcellated into subregions according to the local thalamocortical connectivity pattern. DTI measures of thalamocortical connections were compared between the two groups. RESULTS: Probabilistic tractography analyses showed that fractional anisotropy of thalamocortical pathways in patients with epilepsy decreased significantly, and the radial diffusivity of the left thalamus pathways with homolateral motor and parietal-occipital cortical regions in the drug-resistant epilepsy group increased significantly. In addition to the right thalamus pathway and prefrontal cortical region, fractional anisotropy of all other pathways was inversely correlated with disease duration. CONCLUSION: The results provide evidence indicating widespread bilateral abnormalities in the thalamocortical pathways in epilepsy patients and imply that the degree of abnormality in the pathway increases with the disease duration.