Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Publication year range
1.
J Colloid Interface Sci ; 668: 98-109, 2024 Aug 15.
Article in English | MEDLINE | ID: mdl-38670000

ABSTRACT

Developing cost-effective monolith catalyst with superior low-temperature activity is critical for oxidative efficacious removal of industrial volatile organic compounds (VOCs). However, the complexity of the industrial flue gas conditions demands the need for high moisture tolerance, which is challenging. Herein, CoMn-Metal Organic Framework (CoMn-MOF) was in situ grown on Ni foam (NiF) at room temperature to synthesize the cost-effective monolith catalyst. The optimized catalyst, Co1Mn1/NiF, exhibited excellent performance in toluene oxidation (T90 = 239 °C) due to the substitution of manganese into the cobalt lattice. This substitution weakened the Co-O bond strength, creating more oxygen vacancies and increasing the active oxygen species content. Additionally, experimentally and computationally evidence revealed that the mutual inhibiting effect of three typical aromatic hydrocarbons (benzene, toluene and m-xylene) over the Co1Mn1/NiF catalyst was attributed to the competitive adsorption occurring on the active site. Furthermore, the Co1Mn1/NiF catalyst also presents outstanding water resistance, particularly at a concentration of 3 vol%, where the activity is even enhanced. This was attributed to the lower water adsorption and dissociation energy derived from the interaction between the bimetals. Results demonstrate that the dissociation of water vapor enables more reactive oxygen species to participate in the reaction which reduces the formation of intermediates and facilitates the reaction. This investigation provides new insights into the preparation of oxygen vacancy-rich monolith catalysts with high water resistance for practical applications.

2.
Huan Jing Ke Xue ; 43(4): 1808-1813, 2022 Apr 08.
Article in Chinese | MEDLINE | ID: mdl-35393804

ABSTRACT

In order to study the effect of wet electrostatic precipitators(WESP) on emission characteristics of condensable particulate matter (CPM) from ultra-low emission coal-fired power plants that are under different capacity conditions, a set of CPM sampling devices was built based on US EPA Method 202, and an ultra-low emission coal-fired power plant was detected. This study evaluated the emission level of the CPM from the flue gas of coal-fired power plants, the effects of different unit capacity conditions on the CPM emission concentrations, and the removal efficiency of WESP for different components of the CPM. The results suggested that the emission concentrations of the CPM from ultra-low emission power plants were 27.27 mg·m-3 and 28.71 mg·m-3under the conditions of 75% and 100% capacity, respectively. The removal efficiencies of WESP for the CPM were 35.59% and 27.59%, respectively. SO42- was the main component of water-soluble ions of the CPM. The proportion of SO42- in inorganic components of the CPM reached more than 65% under different capacity conditions. In addition, the removal efficiency of WESP for Cl-, K+, Ca2+, Mg2+, Na+, and other inorganic ions reached 30%-50%, but the mass concentrations of SO42- and NO3- increased.


Subject(s)
Air Pollutants , Particulate Matter , Air Pollutants/analysis , Coal/analysis , Ions , Particulate Matter/analysis , Power Plants
SELECTION OF CITATIONS
SEARCH DETAIL
...