Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Opt ; 56(15): 4426-4432, 2017 May 20.
Article in English | MEDLINE | ID: mdl-29047873

ABSTRACT

Finite element method (FEM)-based time-domain quantitative photoacoustic tomography (TD-qPAT) is a powerful approach, as it provides highly accurate quantitative imaging capability by recovering absolute tissue absorption coefficients for functional imaging. However, this approach is extremely computationally demanding, and requires days for the reconstruction of one set of images, making it impractical to be used in clinical applications, where a large amount of data needs to be processed in a limited time scale. To address this challenge, here we present a graphic processing unit (GPU)-based parallelization method to accelerate the image reconstruction using FEM-based TD-qPAT. In addition, to further optimize FEM-based TD-qPAT reconstruction, an adaptive meshing technique, along with mesh density optimization, is adopted. Phantom experimental data are used in our study to evaluate the GPU-based TD-qPAT algorithm, as well as the adaptive meshing technique. The results show that our new approach can considerably reduce the computation time by at least 136-fold over the current central processing unit (CPU)-based algorithm. The quality of image reconstruction is also improved significantly when adaptive meshing and mesh density optimization are applied.

2.
Biomed Opt Express ; 8(12): 5814-5824, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-29296506

ABSTRACT

In this study, we in vivo examined injury progression after intracerebral haemorrhage (ICH) induced by collagenase in mice using cross-sectional photoacoustic tomography (csPAT). csPAT displayed high resolution with high sensitivity for ICH detection. The PAT images obtained showed high correlation with conventional histologic images. Quantitative analysis of the hematoma areas detected by csPAT showed high consistency with the neurologic deficit score (NDS). By utilizing the dual-wavelength method, the development of the hemoglobin area was monitored. Our results indicated that noninvasive csPAT can be used to track the dynamic progression of post-ICH, and to evaluate therapeutic interventions in preclinical ICH models.

3.
Int J Mol Sci ; 15(12): 23616-39, 2014 Dec 18.
Article in English | MEDLINE | ID: mdl-25530615

ABSTRACT

Photoacoustic imaging (PAI) and thermoacoustic imaging (TAI) are two emerging biomedical imaging techniques that both utilize ultrasonic signals as an information carrier. Unique advantages of PAI and TAI are their abilities to provide high resolution functional information such as hemoglobin and blood oxygenation and tissue dielectric properties relevant to physiology and pathology. These two methods, however, may have a limited detection depth and lack of endogenous contrast. An exogenous contrast agent is often needed to effectively resolve these problems. Such agents are able to greatly enhance the imaging contrast and potentially break through the imaging depth limit. Furthermore, a receptor-targeted contrast agent could trace the molecular and cellular biological processes in tissues. Thus, photoacoustic and thermoacoustic molecular imaging can be outstanding tools for early diagnosis, precise lesion localization, and molecular typing of various diseases. The agents also could be used for therapy in conjugation with drugs or in photothermal therapy, where it functions as an enhancer for the integration of diagnosis and therapy. In this article, we present a detailed review about various exogenous contrast agents for photoacoustic and thermoacoustic molecular imaging. In addition, challenges and future directions of photoacoustic and thermoacoustic molecular imaging in the field of translational medicine are also discussed.


Subject(s)
Contrast Media/chemistry , Neoplasms/diagnosis , Photoacoustic Techniques/methods , Animals , Humans , Multimodal Imaging/methods , Tomography, Optical/methods
4.
Neuroimage ; 66: 240-8, 2013 Feb 01.
Article in English | MEDLINE | ID: mdl-23128072

ABSTRACT

While brain imaging and electrophysiology play a central role in neuroscience research and in the evaluation of neurological disorders, a single noninvasive modality that offers both high spatial and temporal resolution is currently not available. Here we show in an acute epilepsy rat model that photoacoustic tomography (PAT) can noninvasively track seizure brain dynamics with both high spatial and temporal resolution, and at a depth that is clinically relevant. The noninvasive yet whole surface and depth capabilities of the PAT system allowed us to actually see what is happening during ictogenesis in terms of seizure onset and spread. Both seizure onset and propagation were tomographically detected at a spatial resolution of 150µm and a temporal resolution of 300ms, respectively. The current study lends support to the theory that seizure onset and spread involves a rich interplay between multiple cortical and subcortical brain areas during the onset and spread of epileptic seizures. Dynamical changes of vasculature during epileptiform events were also detected with high spatiotemporal resolution. Together, these findings suggest that PAT represents a powerful tool for noninvasively mapping seizure onset and propagation patterns, and the 'functional' connectivity within epileptic brain networks.


Subject(s)
Epilepsy/physiopathology , Photoacoustic Techniques , Tomography/methods , Animals , Disease Models, Animal , Image Processing, Computer-Assisted/methods , Male , Rats , Rats, Sprague-Dawley
5.
Biomed Opt Express ; 3(6): 1427-32, 2012 Jun 01.
Article in English | MEDLINE | ID: mdl-22741087

ABSTRACT

A real-time three-dimensional (3D) photoacoustic imaging system was developed for epilepsy imaging in small animals. The system is based on a spherical array containing 192 transducers with a 5 MHz central frequency. The signals from the 192 transducers are amplified by 16 homemade preamplifier boards with 26 dB and multiplexed into a 64 channel data acquisition system. It can record a complete set of 3D data at a frame rate of 3.3 f/s, and the spatial resolution is about 0.2 mm. Phantom experiments were conducted to demonstrate the high imaging quality and real time imaging ability of the system. Finally, we tested the system on an acute epilepsy rat model, and the induced seizure focus was successfully detected using this system.

SELECTION OF CITATIONS
SEARCH DETAIL
...