Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.431
Filter
1.
Cancer Lett ; : 216989, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38825162

ABSTRACT

Exosomes, a subset of extracellular vesicles, are released by all active cells and play a crucial role in intercellular communications. Exosomes could facilitate the transfer of various biologically active molecules, such as DNA, non-coding RNAs, and proteins, from donor to recipient cells, thereby participating in diverse biological and pathological processes. Besides, exosomes possess unique characteristics, including non-toxicity, low-immunogenicity, and stability within biological systems, rendering them highly advantageous for cancer drug development. Meanwhile, accumulating evidence suggests that exosomes originating from tumor cells and immune cells possess distinct composition profiles that play a direct role in anticancer immunotherapy. Of note, exosomes can transport their contents to specific cells, thereby exerting an impact on the phenotype and immune-regulatory functions of targeted cells. Therapeutic cancer vaccines, an emerging therapeutics of immunotherapy, could enhance antitumor immune responses by delivering a large number of tumor antigens, thereby augmenting the immune response against tumor cells. Therefore, the therapeutic rationale of cancer vaccines and exosome-based immunotherapy are almost similar to some extent, but some challenges have hindered their application in the clinical setting. Here, in this review, we first summarized the biogenesis, structure, compositions, and biological functions of exosomes. Then we described the roles of exosomes in cancer biology, particularly in tumor immunity. We also comprehensively reviewed current exosome-based anticancer vaccine development and we divided them into three types. Finally, we give some insights into clinical translation and clinical trial progress of exosome-based anticancer vaccines for future direction.

2.
Food Chem ; 455: 139923, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38833855

ABSTRACT

This research aimed to develop a novel, effective, and stable delivery system based on zein (ZE), sodium caseinate (SC), and quaternary ammonium chitosan (HACC) for curcumin (CUR). The pH-driven self-assembly combined with electrostatic deposition methods were employed to construct CUR-loaded ZE-SC nanoparticles with HACC coating (ZE-SC@HACC). The optimized nanocomposite was prepared at ZE:SC:HACC:CUR mass ratios of 1:1:2:0.1, and it had encapsulation efficiency of 89.3%, average diameter of 218.2 nm, and ζ-potential of 40.7 mV. The assembly of composites and encapsulation of CUR were facilitated primarily by hydrophobic, hydrogen-bonding, and electrostatic interactions. Physicochemical stability analysis revealed that HACC coating dramatically enhanced ZE-SC nanoparticles' colloidal stability and CUR's resistance to chemical degradation. Additionally, antioxidant activity and simulated digestion results indicated that CUR-ZE-SC@HACC nanoparticles showed higher free radical scavenging capacity and bio-accessibility of CUR than CUR-ZE-SC nanoparticles and free CUR. Therefore, the ZE-SC@HACC nanocomposite is an effective and viable delivery system for CUR.

3.
Bioact Mater ; 39: 206-223, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38827172

ABSTRACT

Traditional treatments against advanced non-small cell lung cancer (NSCLC) with high morbidity and mortality continue to be dissatisfactory. Given this situation, there is an urgent requirement for alternative modalities that provide lower invasiveness, superior clinical effectiveness, and minimal adverse effects. The combination of photodynamic therapy (PDT) and immunotherapy gradually become a promising approach for high-grade malignant NSCLC. Nevertheless, owing to the absence of precise drug delivery techniques as well as the hypoxic and immunosuppressive characteristics of the tumor microenvironment (TME), the efficacy of this combination therapy approach is less than ideal. In this study, we construct a novel nanoplatform that indocyanine green (ICG), a photosensitizer, loads into hollow manganese dioxide (MnO2) nanospheres (NPs) (ICG@MnO2), and then encapsulated in PD-L1 monoclonal antibodies (anti-PD-L1) reprogrammed exosomes (named ICG@MnO2@Exo-anti-PD-L1), to effectively modulate the TME to oppose NSCLC by the synergy of PDT and immunotherapy modalities. The ICG@MnO2@Exo-anti-PD-L1 NPs are precisely delivered to the tumor sites by targeting specially PD-L1 highly expressed cancer cells to controllably release anti-PD-L1 in the acidic TME, thereby activating T cell response. Subsequently, upon endocytic uptake by cancer cells, MnO2 catalyzes the conversion of H2O2 to O2, thereby alleviating tumor hypoxia. Meanwhile, ICG further utilizes O2 to produce singlet oxygen (1O2) to kill tumor cells under 808 nm near-infrared (NIR) irradiation. Furthermore, a high level of intratumoral H2O2 reduces MnO2 to Mn2+, which remodels the immune microenvironment by polarizing macrophages from M2 to M1, further driving T cells. Taken together, the current study suggests that the ICG@MnO2@Exo-anti-PD-L1 NPs could act as a novel drug delivery platform for achieving multimodal therapy in treating NSCLC.

4.
J Neuroeng Rehabil ; 21(1): 69, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38725065

ABSTRACT

BACKGROUND: In the practical application of sarcopenia screening, there is a need for faster, time-saving, and community-friendly detection methods. The primary purpose of this study was to perform sarcopenia screening in community-dwelling older adults and investigate whether surface electromyogram (sEMG) from hand grip could potentially be used to detect sarcopenia using machine learning (ML) methods with reasonable features extracted from sEMG signals. The secondary aim was to provide the interpretability of the obtained ML models using a novel feature importance estimation method. METHODS: A total of 158 community-dwelling older residents (≥ 60 years old) were recruited. After screening through the diagnostic criteria of the Asian Working Group for Sarcopenia in 2019 (AWGS 2019) and data quality check, participants were assigned to the healthy group (n = 45) and the sarcopenic group (n = 48). sEMG signals from six forearm muscles were recorded during the hand grip task at 20% maximal voluntary contraction (MVC) and 50% MVC. After filtering recorded signals, nine representative features were extracted, including six time-domain features plus three time-frequency domain features. Then, a voting classifier ensembled by a support vector machine (SVM), a random forest (RF), and a gradient boosting machine (GBM) was implemented to classify healthy versus sarcopenic participants. Finally, the SHapley Additive exPlanations (SHAP) method was utilized to investigate feature importance during classification. RESULTS: Seven out of the nine features exhibited statistically significant differences between healthy and sarcopenic participants in both 20% and 50% MVC tests. Using these features, the voting classifier achieved 80% sensitivity and 73% accuracy through a five-fold cross-validation. Such performance was better than each of the SVM, RF, and GBM models alone. Lastly, SHAP results revealed that the wavelength (WL) and the kurtosis of continuous wavelet transform coefficients (CWT_kurtosis) had the highest feature impact scores. CONCLUSION: This study proposed a method for community-based sarcopenia screening using sEMG signals of forearm muscles. Using a voting classifier with nine representative features, the accuracy exceeds 70% and the sensitivity exceeds 75%, indicating moderate classification performance. Interpretable results obtained from the SHAP model suggest that motor unit (MU) activation mode may be a key factor affecting sarcopenia.


Subject(s)
Electromyography , Hand Strength , Independent Living , Machine Learning , Sarcopenia , Humans , Sarcopenia/diagnosis , Sarcopenia/physiopathology , Electromyography/methods , Aged , Male , Female , Hand Strength/physiology , China , Middle Aged , Muscle, Skeletal/physiopathology , Support Vector Machine , Aged, 80 and over , East Asian People
5.
J Integr Plant Biol ; 2024 May 02.
Article in English | MEDLINE | ID: mdl-38695653

ABSTRACT

Vicinal oxygen chelate (VOC) proteins are members of an enzyme superfamily with dioxygenase or non-dioxygenase activities. However, the biological functions of VOC proteins in plants are poorly understood. Here, we show that a VOC in Nicotiana benthamiana (NbVOC1) facilitates viral infection. NbVOC1 was significantly induced by infection by beet necrotic yellow vein virus (BNYVV). Transient overexpression of NbVOC1 or its homolog from Beta vulgaris (BvVOC1) enhanced BNYVV infection in N. benthamiana, which required the nuclear localization of VOC1. Consistent with this result, overexpressing NbVOC1 facilitated BNYVV infection, whereas, knockdown and knockout of NbVOC1 inhibited BNYVV infection in transgenic N. benthamiana plants. NbVOC1 interacts with the basic leucine zipper transcription factors bZIP17/28, which enhances their self-interaction and DNA binding to the promoters of unfolded protein response (UPR)-related genes. We propose that bZIP17/28 directly binds to the NbVOC1 promoter and induces its transcription, forming a positive feedback loop to induce the UPR and facilitating BNYVV infection. Collectively, our results demonstrate that NbVOC1 positively regulates the UPR that enhances viral infection in plants.

6.
Plant J ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713838

ABSTRACT

The RNA regulatory network is a complex and dynamic regulation in plant cells involved in mRNA modification, translation, and degradation. Ras-GAP SH3 domain-binding protein (G3BP) is a scaffold protein for the assembly of stress granules (SGs) and is considered an antiviral component in mammals. However, the function of G3BP during virus infection in plants is still largely unknown. In this study, four members of the G3BP-like proteins (NtG3BPLs) were identified in Nicotiana tabacum and the expression levels of NtG3BPL1 were upregulated during chilli veinal mottle virus (ChiVMV) infection. NtG3BPL1 was localized in the nucleus and cytoplasm, forming cytoplasmic granules under transient high-temperature treatment, whereas the abundance of cytoplasmic granules was decreased under ChiVMV infection. Overexpression of NtG3BPL1 inhibited ChiVMV infection and delayed the onset of symptoms, whereas knockout of NtG3BPL1 promoted ChiVMV infection. In addition, NtG3BPL1 directly interacted with ChiVMV 6K2 protein, whereas 6K2 protein had no effect on NtG3BPL1-derived cytoplasmic granules. Further studies revealed that the expression of NtG3BPL1 reduced the chloroplast localization of 6K2-GFP and the NtG3BPL1-6K2 interaction complex was localized in the cytoplasm. Furthermore, NtG3BPL1 promoted the degradation of 6K2 through autophagy pathway, and the accumulation of 6K2 and ChiVMV was affected by autophagy activation or inhibition in plants. Taken together, our results demonstrate that NtG3BPL1 plays a positive role in tobacco resistance against ChiVMV infection, revealing a novel mechanism of plant G3BP in antiviral strategy.

7.
Heliyon ; 10(10): e30667, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38765043

ABSTRACT

Based on the water-rock-gas coupling test system, the work combined the scanning electron microscope and XTDIC 3D full-field strain measurement system. The Brazilian splitting test was performed on four groups of sandy mudstone specimens under contrast (CO), mash-gas soaking (MS), water-mash gas soaking (WM), and water-soaking (WS) conditions. The tensile strength, deformation failure, and microscopic characteristics of fractures were studied to reveal the deterioration mechanism of the tensile properties of sandy mudstone under water-gas coupling. The results showed that the uniaxial tensile strength of sandy mudstone specimens under the three soaking conditions was less than that of the contrast conditions. Compared with specimens in the CO group, the tensile strength of specimens in MS-WS groups was reduced; the WS group decreased the most. Specimens changed from brittle failure to plastic failure after soaking. The decrease rate in strength after the peak was consistent with the change trend in tensile strength. It led to a larger localized deformation zone of specimens and more obvious displacement. The deformation localization zone of the WS group was the broadest, with the most intense displacement. Besides, stress concentration first occurred in the submerged part of the WM group. Fractures expanded in the direction of maximum principal strain. The internal pore structure of sandy mudstone specimens in each group changed after soaking. The average porosity, maximum pore area, and probability entropy of specimens in WS-MS groups increased compared to the CO group. The WS group had the largest reduction and the MS group had the smallest. The pre-peak energy storage capacity of sandy mudstone specimens was gradually weakened. Compared with the CO group, that in the WS-MS groups was reduced. The WS group had the greatest reduction, and the MS group had the smallest. The deterioration effect of water on the interior of sandy mudstone was stronger than that of gas. The work is of great significance for understanding the stability of coal and rocks in closed-pit high-gas mines.

8.
Gene ; 923: 148577, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38762016

ABSTRACT

Agrobacteria-mediated transformation is widely used in plant genetic engineering to introduce exogenous genes and create mutant lines through random T-DNA insertion and gene disruption. When T-DNA fragments are inserted into the plant genome, it could cause chromosomal abnormalities. In this study, we investigated the genetic basis of pleiotropic phenotypes observed in the T-DNA insertion mutant lnc161. We discovered that there are four T-DNA insertions present in the lnc161 genome, which disrupted the genes LNC161 (AT3G05035), AT3G57400, AT5G05630, and AT5G16450, respectively. However, none of these insertions were the causative mutation that leads to the lnc161 phenotypes. Strikingly, through genetic analyses and high throughput sequencing, we found an inversion of about 19.8 Mb sequences between LNC161 and AT3G57400. Moreover, the sequences between AT5G05630 and AT5G16450 (about 3.7 Mb) were translocated from chromosome 5 to chromosome 3, adjacent to the inversion sequences, and were duplicated. This duplication led to an up-regulation of genes expression in this region, potentially resulting in pleiotropic morphological traits in lnc161. Overall, this study provides a case showing complex chromosomal re-arrangement induced by T-DNA insertion.

11.
Article in English | MEDLINE | ID: mdl-38739518

ABSTRACT

The employment of surface electromyographic (sEMG) signals in the estimation of hand kinematics represents a promising non-invasive methodology for the advancement of human-machine interfaces. However, the limitations of existing subject-specific methods are obvious as they confine the application to individual models that are custom-tailored for specific subjects, thereby reducing the potential for broader applicability. In addition, current cross-subject methods are challenged in their ability to simultaneously cater to the needs of both new and existing users effectively. To overcome these challenges, we propose the Cross-Subject Lifelong Network (CSLN). CSLN incorporates a novel lifelong learning approach, maintaining the patterns of sEMG signals across a varied user population and across different temporal scales. Our method enhances the generalization of acquired patterns, making it applicable to various individuals and temporal contexts. Our experimental investigations, encompassing both joint and sequential training approaches, demonstrate that the CSLN model not only attains enhanced performance in cross-subject scenarios but also effectively addresses the issue of catastrophic forgetting, thereby augmenting training efficacy.


Subject(s)
Algorithms , Electromyography , Hand , Humans , Electromyography/methods , Hand/physiology , Biomechanical Phenomena , Male , Adult , Learning/physiology , Female , Man-Machine Systems , Machine Learning , Young Adult , Neural Networks, Computer , Muscle, Skeletal/physiology
12.
Int Immunopharmacol ; 134: 112250, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38749335

ABSTRACT

Trypanosoma brucei, a causative agent of human and animal trypanosomiasis, regularly switches its major surface antigen to avoid elimination by the immune system. Toll-like receptor 9 (TLR9) is a key modulator for resistance to host-infective trypanosomes; however, the underlying molecular mechanism remains indistinct. Thus, we first approached the issue using Tlr9-mutant mice that render them non-responsive to TLR9 agonists. After infection, T cells in the spleens of Tlr9-mutant mice were analyzed by flow cytometry and a reduction in CD8+, CD4+ T, and NKT cells was observed in Tlr9-mutant mice compared to WT mice. We further found that the responses of inflammatory cytokines in the sera were reduced in Tlr9-mutant mice after T. brucei infection. The underlying molecular mechanism was that T. b. brucei DNA activated TLR9, which consequently upregulated the expression of p38 and ERK/MAPK, resulting in host resistance to trypanosome infection. In conclusion, these findings provide novel insights into the TLR9-mediated host responses to trypanosome infection.


Subject(s)
Cytokines , Signal Transduction , Toll-Like Receptor 9 , Trypanosoma brucei brucei , Trypanosomiasis, African , Toll-Like Receptor 9/metabolism , Toll-Like Receptor 9/agonists , Animals , Trypanosoma brucei brucei/immunology , Trypanosomiasis, African/immunology , Mice , Cytokines/metabolism , Mice, Knockout , Mice, Inbred C57BL , Humans
13.
J Ethnopharmacol ; 331: 118274, 2024 Sep 15.
Article in English | MEDLINE | ID: mdl-38697410

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: Polycystic ovary syndrome (PCOS) is a common endocrine disorder associated with reproductive dysfunction and metabolic abnormalities, particularly characterized by insulin resistance and chronic low-grade inflammation. Multiple clinical studies have clearly demonstrated the significant efficacy and safety of the combination of Bailing capsules (BL) in the treatment of PCOS, but its pharmacological effects and mechanisms still require further study. AIM OF THE STUDY: To evaluate the effect of BL on improving PCOS in mice and explore the mechanism. METHODS: In this study, Dehydroepiandrosterone (DHEA) injection was administered alone and in combination with a high-fat and high-sugar diet to induce PCOS-like mouse. They were randomly divided into five groups: normal group (N), PCOS group (P), Bailing capsule low-dose group (BL-L), Bailing capsule high-dose group (BL-H) and Metformin + Daine-35 group (M + D). Firstly, the effects of BL on ovarian lesions, serum hormone levels, HOMA-IR, intestinal barrier function, inflammation levels, along with the expression of IRS1, PI3K, AKT, TLR4, Myd88, NF-κB p65, TNF-α, IL-6, and Occludin of the ovary, liver and colon were investigated. Finally, the composition of the gut microbiome of fecal was tested. RESULTS: The administration of BL significantly reduced body weight, improved hormone levels, improved IR, and attenuated pathological damage to ovarian tissues, up-regulated the expression of IRS1, PI3K, and AKT in liver. It also decreased serum LPS, TNF-α, and IL-6 levels, while downregulating the expression of Myd88, TLR4, and NF-κB p65. Additionally, BL improved intestinal barrier damage and upregulated the expression of Occludin. Interestingly, the abundance of norank_f__Muribaculacea and Lactobacillus was down-regulated, while the abundance of Akkermansia was significantly up-regulated. CONCLUSION: The results of the study showed that BL exerts a treatment PCOS effect, which may be related to the modulation of the gut microbiota, the improvement of insulin resistance and the intestinal-derived LPS-TLR4 inflammatory pathway. Our research will provide a theoretical basis for the clinical treatment of PCOS.


Subject(s)
Drugs, Chinese Herbal , Lipopolysaccharides , Polycystic Ovary Syndrome , Signal Transduction , Toll-Like Receptor 4 , Polycystic Ovary Syndrome/drug therapy , Polycystic Ovary Syndrome/chemically induced , Animals , Female , Toll-Like Receptor 4/metabolism , Mice , Signal Transduction/drug effects , Drugs, Chinese Herbal/pharmacology , Insulin Resistance , Diet, High-Fat/adverse effects , Disease Models, Animal , Dehydroepiandrosterone/pharmacology , Capsules , Intestines/drug effects , Mice, Inbred C57BL , Ovary/drug effects , Ovary/metabolism , Ovary/pathology
14.
J Clin Immunol ; 44(6): 131, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775840

ABSTRACT

RHOH, an atypical small GTPase predominantly expressed in hematopoietic cells, plays a vital role in immune function. A deficiency in RHOH has been linked to epidermodysplasia verruciformis, lung disease, Burkitt lymphoma and T cell defects. Here, we report a novel germline homozygous RHOH c.245G > A (p.Cys82Tyr) variant in a 21-year-old male suffering from recurrent, invasive, opportunistic infections affecting the lungs, eyes, and brain. His sister also succumbed to a lung infection during early adulthood. The patient exhibited a persistent decrease in CD4+ T, B, and NK cell counts, and hypoimmunoglobulinemia. The patient's T cell showed impaired activation upon in vitro TCR stimulation. In Jurkat T cells transduced with RHOHC82Y, a similar reduction in activation marker CD69 up-regulation was observed. Furthermore, the C82Y variant showed reduced RHOH protein expression and impaired interaction with the TCR signaling molecule ZAP70. Together, these data suggest that the newly identified autosomal-recessive RHOH variant is associated with T cell dysfunction and recurrent opportunistic infections, functioning as a hypomorph by disrupting ZAP70-mediated TCR signaling.


Subject(s)
Homozygote , Opportunistic Infections , Humans , Male , Young Adult , Jurkat Cells , Lymphocyte Activation/genetics , Opportunistic Infections/genetics , Opportunistic Infections/immunology , Pedigree , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/metabolism , Recurrence , T-Lymphocytes/immunology , ZAP-70 Protein-Tyrosine Kinase/genetics , ZAP-70 Protein-Tyrosine Kinase/metabolism
15.
Anal Methods ; 16(20): 3209-3219, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38713168

ABSTRACT

BACKGROUND: halogenic disinfectants have been shown to produce toxic and carcinogenic disinfection by-products in the water disinfection process. Dibromohydantoin (DBDMH) is a commonly used water disinfectant in aquaculture. Aquaculture water has more complex matrix, and the analytical method for disinfection by-products (DBPs) have not been reported. Since the content of DBPs is related to the external conditions such as ultraviolet irradiation, temperatures, pH and humic acid. The semi-target screening method for mainly DBPs based on tracing mass spectrometry fragments of bromide and accurate mass of high resolution mass spectrometry was established by ultra performance liquid chromatography-quadrupole-time of flight-mass spectrometry (UPLC-Q-tof/MS). Br-DBPs as a important class of DBPs from DBDMH, which quantification analysis methods were developed based on accurate mass of high resolution mass spectrometry. METHODS: through screening method to identify unknown Br-DBPs and quantitative analysis of the typical 4-bromophenol by-product of accurate mass was established. The conditions of the instrument parameters of mass spectrometry and SPE sample preparation procedure in complex real sample were optimized. The high efficiency method was demonstrated for the determination of Br-DBPs with a good linear correlation (R2 = 0.999) in the range of 0.500-200 µg L-1 and limit of detections (LODs) and limit of quantifications (LOQs) were 0.0250 ng L-1 and 0.0834 ng L-1, respectively. CONCLUSION: the developed screening and quantification analytical strategy for Br-DBPs is rapid, accurate and sensitivity applicable for environmental in aquaculture water monitoring.


Subject(s)
Aquaculture , Disinfectants , Mass Spectrometry , Water Pollutants, Chemical , Aquaculture/methods , Chromatography, High Pressure Liquid/methods , Water Pollutants, Chemical/analysis , Mass Spectrometry/methods , Disinfectants/analysis , Disinfectants/chemistry , Disinfection/methods
16.
Vet Parasitol ; : 110175, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38614824

ABSTRACT

As an intracellular parasitic nematode, Trichinella spiralis (T. spiralis) can induce the formation of nurse cells (NC) in host muscles and keep it to survive within the NC for an extended period. The formation of NC is similar to muscle cell injury and repair which lead to the arrest of satellite cells in the G2/M phase and build a suitable parasitic environment for the muscle larvae of T. spiralis. However, the molecular mechanisms involved in skeletal muscle repair through skeletal muscle satellite cells (SMSC) and the host immune response during T. spiralis infection have not been fully elucidated. In this study, histopathological examination revealed that the severity of damage increased as the infection progressed in the soleus muscle. SMSCs were isolated from BALB/c mice infected with T. spiralis at 4, 21 and 35 days post-infection (dpi). The immunological characteristics of these cells were analyzed by real-time PCR and flow cytometry (FCM). FCM analysis revealed a notable increase in the expression of B7 homolog 1 (B7-H1) in SMSCs following T. spiralis infection, while conversely, the expression of inducible costimulatory ligand (ICOSL) significantly decreased. Furthermore, real-time PCR results showed that toll like receptor 3 (TLR3) expression in SMSCs of the infected mice was upregulated at 21 dpi. The expression levels of three subtypes (PPARα, PPARß and PPARγ) of peroxisome proliferator-activated receptors (PPARs) also increased in the cells. This study highlights the immunological regulation significance of SMSCs host during T. spiralis infection and suggests that SMSCs actively participant in the local immune response to T. spiralis by regulating the interaction between the parasite and the host.

17.
Patterns (N Y) ; 5(4): 100930, 2024 Apr 12.
Article in English | MEDLINE | ID: mdl-38645770

ABSTRACT

Asymmetry is an important property of brain organization, but its nature is still poorly understood. Capturing the neuroanatomical components specific to each hemisphere facilitates the understanding of the establishment of brain asymmetry. Since deep generative networks (DGNs) have powerful inference and recovery capabilities, we use one hemisphere to predict the opposite hemisphere by training the DGNs, which automatically fit the built-in dependencies between the left and right hemispheres. After training, the reconstructed images approximate the homologous components in the hemisphere. We use the difference between the actual and reconstructed hemispheres to measure hemisphere-specific components due to asymmetric expression of environmental and genetic factors. The results show that our model is biologically plausible and that our proposed metric of hemispheric specialization is reliable, representing a wide range of individual variation. Together, this work provides promising tools for exploring brain asymmetry and new insights into self-supervised DGNs for representing the brain.

18.
Plant Physiol ; 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38652695

ABSTRACT

Centromeres in most multicellular eukaryotes are composed of long arrays of repetitive DNA sequences. Interestingly, several transposable elements, including the well-known long terminal repeat (LTR) retrotransposon CRM (centromeric retrotransposon of maize), were found to be enriched in functional centromeres marked by the centromeric histone H3 (CENH3). Here we report a centromeric long interspersed nuclear element (LINE), Celine, in Populus species. Celine has colonized preferentially in the CENH3-associated chromatin of every poplar chromosome, with 84% of the Celine elements localized in the CENH3-binding domains. By contrast, only 51% of the CRM elements were bound to CENH3 domains in Populus trichocarpa. These results suggest different centromere targeting mechanisms employed by Celine and CRM elements. Nevertheless, the high target specificity seems to be detrimental to further amplification of the Celine elements, leading to a shorter life span and patchy distribution among plant species compared to the CRM elements. Using a phylogenetically guided approach we were able to identify Celine-like LINE elements in tea plant (Camellia sinensis) and green ash tree (Fraxinus pennsylvanica). The centromeric localization of these Celine-like LINEs was confirmed in both species. We demonstrate that the centromere targeting property of Celine-like LINEs is of primitive origin and has been conserved among distantly related plant species.

19.
MycoKeys ; 104: 51-70, 2024.
Article in English | MEDLINE | ID: mdl-38665971

ABSTRACT

During our biodiversity investigations in Tibet, China, typical Cytospora canker symptoms were observed on branches of hosts Myricariapaniculate, Prunuscerasifera and Sibiraeaangustata. Samples were studied, based on morphological features coupled with multigene phylogenetic analyses of ITS, act, rpb2, tef1 and tub2 sequence data, which revealed two new species (Cytosporamyricicolasp. nov. and C.sibiraeicolasp. nov.) and a known species (C.populina). In addition, Cytosporapopulina is newly discovered on the host Prunuscerasifera and in Tibet.

20.
Opt Lett ; 49(8): 1965-1968, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38621052

ABSTRACT

We propose a concise hardware architecture supporting efficient exclusive OR (XOR) and exclusive NOR (XNOR) operations, by employing a single photonic spiking neuron based on a passive add-drop microring resonator (ADMRR). The threshold mechanism and inhibitory dynamics of the ADMRR-based spiking neuron are numerically discussed on the basis of the coupled mode theory. It is shown that a precise XOR operation in the ADMRR-based spiking neuron can be implemented by adjusting temporal differences within the inhibitory window. Additionally, within the same framework, the XNOR function can also be carried out by accumulating the input power over time to trigger an excitatory behavior. This work presents a novel, to the best of our knowledge, and pragmatic technique for optical neuromorphic computing and information processing utilizing passive devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...