Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Technol ; 57(16): 6474-6484, 2023 04 25.
Article in English | MEDLINE | ID: mdl-37051641

ABSTRACT

Global hydrofluorocarbon (HFC) cumulative emissions will be more than 20 Gt CO2-equiv during 2020-2060 and have a non-negligible impact on global warming even in full compliance with the Kigali Amendment (KA). Fluorochemical manufacturers (including multinationals) in China have accounted for about 70% of global HFC production since 2015, of which about 60% is emitted outside China. This study built an integrated model (i.e., DECAF) to estimate both territorial and exported emissions of China under three scenarios and assess the corresponding climate effects as well as abatement costs. Achieving near-zero territorial emissions by 2060 could avoid 23 ± 4 Gt CO2-equiv of cumulative territorial emissions (compared to the 2019 Baseline scenario) during 2020-2060 at an average abatement cost of 9 ± 6 USD/t CO2-equiv. Under the near-zero emission (including territorial and abroad) pathway, radiative forcing from HFCs will peak in 2037 (60 ± 6 mW/m2) with a 33% peak reduction and 8 years in advance compared to the path regulated by the KA, and the radiative forcing by 2060 will be lower than that in 2019. Accelerated phase-out of HFC production in China could provide a possibility for rapid global HFC abatement and achieve greater climate benefits.


Subject(s)
Carbon Dioxide , Global Warming , Cost-Benefit Analysis , Carbon Dioxide/analysis , Rwanda , Climate Change , China
2.
Environ Sci Technol ; 57(12): 4732-4740, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36917702

ABSTRACT

1,1,1,2-Tetrafluoroethane (HFC-134a) is widely used as a refrigerant to replace dichlorodifluoromethane (CFC-12), and a small amount of it is used in the foam and medical aerosol sectors, with a high global warming potential and fast-increasing atmospheric concentration. The emission of HFC-134a in China has been growing at an average annual growth rate of 14.4% since 2009, reaching 53.0 (47.5-58.7) kt yr-1 in 2020. Among the five emission sources, emissions from the mobile air conditioning (MAC) sector accounted for the highest proportion of 65% on average of the total, followed by the commercial air conditioning (CAC) sector (25%), the medical aerosols sector (8%), the foam sector (2%), and leakage emission from the production (less than 0.1%). The emissions of HFC-134a in four cities in China (Beijing, Guangzhou, Hangzhou, and Lanzhou) were also estimated and discussed. Beijing had the highest HFC-134a emission of 2.2 kt yr-1 in 2020, and Lanzhou had the lowest emission of only 0.2 kt yr-1. In Beijing and Guangzhou, emissions from the CAC sector surpassed those from the MAC sector, becoming the most important source of HFC-134a. The average annual growth rate of HFC-134a's emissions during 2009-2019 was close to its concentration enhancement growth rate of 12.7%, and the emissions also showed significant correlations with the concentration enhancements in both China and four cities. This indicates the importance of the muti-city and long-term observations for the verification of HFC-134a's emission estimates at a regional scale.


Subject(s)
Air Pollutants , Air Pollutants/analysis , Cities , Hydrocarbons, Fluorinated , China
SELECTION OF CITATIONS
SEARCH DETAIL
...