Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 158
Filter
1.
Ecotoxicol Environ Saf ; 281: 116584, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38896904

ABSTRACT

Carbaryl is a widely used carbamate pesticide that has been detected in the marine environment, but its effects on marine fish are still unknown. This study was aimed to investigate the effects of long-term exposure of carbaryl on male marine medaka. For this purpose, we set up five exposure concentration groups of 0, 0.1, 1, 10, and 100 µg/L for 180 days. On the one hand, we observed increased aggression and decreased ability to avoid predators in males after exposure, which was affected by the levels of HPA-axis hormones, especially decreased cortisol level. On the other hand, after exposure, HPG axis hormone levels and gene transcription levels were disturbed. Males exhibited a decreased gonadosomatic index and a notable reduction in mature sperm proportion and the F1 generation displayed a significant increase in malformation rate. Additionally, the number of apoptotic cells and the transcription level of apoptosis-related genes in the brains of male marine medaka substantially increased after exposure. Apoptosis of brain cells may be responsible for the disturbance of HPA and HPG axes, consequently leading to behavioral and reproductive abnormalities. These findings provide novel insights into evaluating the toxic effects of carbaryl on male marine medaka and emphasizing the criticality of exploring the potential environmental risks posed by carbaryl in the marine environment, thus providing toxicity value basis for further strengthening marine environmental monitoring and the protection of biological resources.

2.
J Agric Food Chem ; 72(21): 12029-12044, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38752706

ABSTRACT

Weeds present a significant challenge to agricultural productivity, and acetyl-CoA carboxylase (ACCase)-inhibiting herbicides have proven to be effective in managing weed populations in rice fields. To develop ACCase-inhibiting herbicide-resistant rice, we generated mutants of rice ACCase (OsACC) featuring Ile-1792-Leu or Gly-2107-Ser substitutions through ethyl methyl sulfonate (EMS) mutagenesis. The Ile-1792-Leu mutant displayed cross-resistance to aryloxyphenoxypropionate (APP) and phenylpyrazoline (DEN) herbicides, whereas the Gly-2107-Ser mutants primarily exhibited cross-resistance to APP herbicides with diminished resistance to the DEN herbicide. In vitro assays of the OsACC activity revealed an increase in resistance to haloxyfop and quizalofop, ranging from 4.84- to 29-fold in the mutants compared to that in wild-type. Structural modeling revealed that both mutations likely reduce the binding affinity between OsACC and ACCase inhibitors, thereby imparting resistance. This study offers insights into two target-site mutations, contributing to the breeding of herbicide-resistant rice and presenting alternative weed management strategies in rice cultivation.


Subject(s)
Acetyl-CoA Carboxylase , Enzyme Inhibitors , Herbicide Resistance , Herbicides , Mutation , Oryza , Plant Proteins , Acetyl-CoA Carboxylase/genetics , Acetyl-CoA Carboxylase/antagonists & inhibitors , Acetyl-CoA Carboxylase/metabolism , Acetyl-CoA Carboxylase/chemistry , Oryza/genetics , Oryza/enzymology , Herbicides/pharmacology , Herbicides/chemistry , Herbicide Resistance/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Plant Proteins/chemistry , Plant Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/chemistry , Plant Weeds/drug effects , Plant Weeds/genetics , Plant Weeds/enzymology
3.
Nat Commun ; 15(1): 2973, 2024 Apr 06.
Article in English | MEDLINE | ID: mdl-38582890

ABSTRACT

Recent advancements for simultaneously profiling multi-omics modalities within individual cells have enabled the interrogation of cellular heterogeneity and molecular hierarchy. However, technical limitations lead to highly noisy multi-modal data and substantial costs. Although computational methods have been proposed to translate single-cell data across modalities, broad applications of the methods still remain impeded by formidable challenges. Here, we propose scButterfly, a versatile single-cell cross-modality translation method based on dual-aligned variational autoencoders and data augmentation schemes. With comprehensive experiments on multiple datasets, we provide compelling evidence of scButterfly's superiority over baseline methods in preserving cellular heterogeneity while translating datasets of various contexts and in revealing cell type-specific biological insights. Besides, we demonstrate the extensive applications of scButterfly for integrative multi-omics analysis of single-modality data, data enhancement of poor-quality single-cell multi-omics, and automatic cell type annotation of scATAC-seq data. Moreover, scButterfly can be generalized to unpaired data training, perturbation-response analysis, and consecutive translation.

4.
Microorganisms ; 12(4)2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38674638

ABSTRACT

Aeromonas veronii is widespread in aquatic environments and is responsible for infecting various aquatic animals. In this study, a dominant strain was isolated from the hepatopancreas of diseased Macrobrachium rosenbergii and was named JDM1-1. According to its morphological, physiological, and biochemical characteristics and molecular identification, isolate JDM1-1 was identified as A. veronii. The results of artificial challenge showed isolate JDM1-1 had high pathogenicity to M. rosenbergii with an LD50 value of 8.35 × 105 CFU/mL during the challenge test. Histopathological analysis revealed severe damage in the hepatopancreas and gills of the diseased prawns, characterized by the enlargement of the hepatic tubule lumen and gaps between the tubules as well as clubbing and degeneration observed at the distal end of the gill filament. Eight virulence-related genes, namely aer, ompA, lip, tapA, hlyA, flgA, flgM, and flgN, were screened by PCR assay. In addition, virulence factor detection showed that the JDM1-1 isolate produced lipase, lecithinase, gelatinase, and hemolysin. Furthermore, the mRNA expression profiles of immune-related genes of M. rosenbergii following A. veronii infection, including ALF1, ALF2, Crustin, C-lectin, and Lysozyme, were assessed, and the results revealed a significant upregulation in the hepatopancreas and intestines at different hours post infection. This study demonstrates that A. veronii is a causative agent associated with massive die-offs of M. rosenbergii and contributes valuable insights into the pathogenesis and host defense mechanisms of A. veronii invasion.

5.
Bioinformatics ; 40(5)2024 May 02.
Article in English | MEDLINE | ID: mdl-38625746

ABSTRACT

MOTIVATION: With the rapid advancement of single-cell sequencing technology, it becomes gradually possible to delve into the cellular responses to various external perturbations at the gene expression level. However, obtaining perturbed samples in certain scenarios may be considerably challenging, and the substantial costs associated with sequencing also curtail the feasibility of large-scale experimentation. A repertoire of methodologies has been employed for forecasting perturbative responses in single-cell gene expression. However, existing methods primarily focus on the average response of a specific cell type to perturbation, overlooking the single-cell specificity of perturbation responses and a more comprehensive prediction of the entire perturbation response distribution. RESULTS: Here, we present scPRAM, a method for predicting perturbation responses in single-cell gene expression based on attention mechanisms. Leveraging variational autoencoders and optimal transport, scPRAM aligns cell states before and after perturbation, followed by accurate prediction of gene expression responses to perturbations for unseen cell types through attention mechanisms. Experiments on multiple real perturbation datasets involving drug treatments and bacterial infections demonstrate that scPRAM attains heightened accuracy in perturbation prediction across cell types, species, and individuals, surpassing existing methodologies. Furthermore, scPRAM demonstrates outstanding capability in identifying differentially expressed genes under perturbation, capturing heterogeneity in perturbation responses across species, and maintaining stability in the presence of data noise and sample size variations. AVAILABILITY AND IMPLEMENTATION: https://github.com/jiang-q19/scPRAM and https://doi.org/10.5281/zenodo.10935038.


Subject(s)
Single-Cell Analysis , Single-Cell Analysis/methods , Humans , Gene Expression Profiling/methods , Computational Biology/methods , Algorithms , Gene Expression
6.
Fish Shellfish Immunol ; 147: 109440, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342414

ABSTRACT

Vibrio mimicus is a pathogenic bacterium that cause red body disease in Macrobrachium nipponense, leading to high mortality and financial loss. Based on previous studies, rpoS gene contribute to bacterial pathogenicity during infection, but the role of RpoS involved in the immune response of M. nipponense under V. mimicus infection remains unclear. In this study, the pathogen load and the RNA-seq of M. nipponense under wild-type and ΔrpoS strain V. mimicus infection were investigated. Over the entire infection period, the ΔrpoS strain pathogen load was always lower than that of the wild-type strain in the M. nipponense hemolymph, hepatopancreas, gill and muscle. Furthermore, the expression level of rpoS gene in the hepatopancreas was the highest at 24 hours post infection (hpi), then the samples of hepatopancreas tissue infected with the wild type and ΔrpoS strain at 24 hpi were selected for RNA-seq sequencing. The results revealed a significant change in the transcriptomes of the hepatopancreases infected with ΔrpoS strain. In contrast to the wild-type infected group, the ΔrpoS strain infected group exhibited differentially expressed genes (DEGs) enriched in 181 KEGG pathways at 24 hpi. Among these pathways, 8 immune system-related pathways were enriched, including ECM-receptor interaction, PI3K-Akt signaling pathway, Rap1 signaling pathway, Gap junction, and Focal adhesion, etc. Among these pathways, up-regulated genes related to Kazal-type serine protease inhibitors, S-antigen protein, copper zinc superoxide dismutase, tight junction protein, etc. were enriched. This study elucidates that rpoS can affect tissue bacterial load and immune-related pathways, thereby impacting the survival rate of M. nipponense under V. mimicus infection. These findings validate the potential of rpoS as a promising target for the development of a live attenuated vaccine against V. mimicus.


Subject(s)
Palaemonidae , Vibrio Infections , Vibrio mimicus , Animals , Palaemonidae/genetics , Phosphatidylinositol 3-Kinases/genetics , Transcriptome , Vibrio Infections/prevention & control , Immunity
7.
Fish Shellfish Immunol ; 146: 109403, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38266793

ABSTRACT

The high morbidity and mortality of Macrobrachium nipponense occurred in several farms in China, with cardinal symptoms of slow swimming, loss of appetite, empty of intestine, reddening of the hepatopancreas and gills. The pathogen has been confirmed as Decapod Iridescent Virus 1 (DIV1), namely DIV1-mn, by molecular epidemiology, histopathological examination, TEM observation, challenge experiment, and viral load detection. Histopathological analysis showed severe damage in hepatopancreas and gills of diseased prawns, exhibited few eosinophilic inclusions and pyknosis, and TEM of diseased prawns revealed that icosahedral virus particles existed in hepatopancreas and gill, which confirmed the disease of the farmed prawns caused by the DIV1 infection. Besides, challenge tests showed LD50 of DIV1 to M. nipponense was determined to be 2.14 × 104 copies/mL, and real-time PCR revealed that M. nipponense had a very high DIV1 load in the hemocytes, gills and hepatopancreas after infection. Furthermore, qRT-PCR was undertaken to investigated the expression of six immune-related genes in DIV1-infected M. nipponense after different time points, and the results revealed UCHL3, Relish, Gly-Cru2, CTL, MyD88 and Hemocyanin were significantly up-regulated in hemocytes, gills and hepatopancreas, which revealed various expression patterns in response to DIV1 infection. This study revealed that DIV1 infection is responsible for the mass mortality of M. nipponense, one of the important crustacean species, indicating its high susceptibility to DIV1. Moreover, this study will contribute to exploring the interaction between the host and DIV1 infection, specifically in terms of understanding how M. nipponense recognizes and eliminates the invading of DIV1.


Subject(s)
Decapoda , Palaemonidae , Animals , Virulence , Seafood , Immunity
8.
CNS Neurosci Ther ; 30(2): e14351, 2024 02.
Article in English | MEDLINE | ID: mdl-37408386

ABSTRACT

AIMS: Postoperative cognitive dysfunction (POCD) is a common complication associated with poor outcome. Our previous study has shown that living with familiar observers in the same cage reduces anxiety of mice with surgery. Anxiety can impair learning and memory. Thus, this study was designed to determine whether living with familiar observers attenuated the dysfunction of learning and memory of mice with surgery. METHODS: Six- to eight-week-old CD-1 male mice or 18-month-old C57BL/6 male mice had left carotid artery exposure under isoflurane anesthesia. They lived with non-surgery male mice at 2 (number of surgery mice) to 3 (number of non-surgery mice) ratio or with other surgery mice. Mice were subjected to light and dark box test 3 days after surgery to measure their anxiety levels and novel object recognition and fear conditioning tests from 5 days after surgery to measure their learning and memory. Blood and brain were harvested for biochemical analysis. RESULTS: Living with familiar observers that lived with surgery mice for at least 2 weeks before the surgery and then after surgery reduced the anxiety and dysfunction of learning and memory in young adult male mice. Living with unfamiliar observers that lived with surgery mice after the surgery but not before the surgery did not have those effects on the mice with surgery. Living with familiar observers attenuated learning and memory dysfunction after surgery also in old male mice. Living with familiar observers attenuated inflammatory response in the blood and brain and the activation of the lateral habenula (LHb)-ventral tegmental area (VTA) neural circuitry, which has been shown to be important for POCD. Wound infiltration with bupivacaine attenuated the activation of LHb-VTA. CONCLUSION: These results suggest that living with familiar observers attenuates POCD and neuroinflammation, possibly via inhibiting the activation of the LHb-VTA neural circuitry.


Subject(s)
Cognitive Dysfunction , Postoperative Cognitive Complications , Mice , Male , Animals , Neuroinflammatory Diseases , Mice, Inbred C57BL , Cognitive Dysfunction/etiology , Learning
10.
Sci Total Environ ; 908: 168047, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-37918730

ABSTRACT

Tetracycline is a widely used antibiotic and may thus also be an environmental contaminant with an influence on plant growth. The aim of this study was to investigate the inhibition mechanisms of tetracycline in relation to soybean growth and ecological networks in the roots and rhizosphere. To this end, we conducted a pot experiment in which soybean seedlings were grown in soil treated with 0, 10, or 25 mg/kg tetracycline. The effects of tetracycline pollution on growth, productivity, oxidative stress, and nitrogenase activity were evaluated. We further identified the changes in microbial taxa composition and structure at the genus and species levels by sequencing the 16S rRNA gene region. The results showed that tetracycline activates the antioxidant defense system in soybeans, which reduces the abundance of Bradyrhizobiaceae, inhibits the nitrogen-fixing ability, and decreases the nitrogen content in the root system. Tetracycline was also found to suppress the formation of the rhizospheric environment and decrease the complexity and stability of bacterial networks. Beta diversity analysis showed that the community structure of the root was markedly changed by the addition of tetracycline, which predominantly affected stochastic processes. These findings demonstrate that the influence of tetracycline on soybean roots could be attributed to the decreased stability of the bacterial community structure, which limits the number of rhizobium nodules and inhibits the nitrogen-fixing capacity. This exploration of the inhibitory mechanisms of tetracycline in relation to soybean root development emphasises the potential risks of tetracycline pollution to plant growth in an agricultural setting. Furthermore, this study provides a theoretical foundation from which to improve our understanding of the physiological toxicity of antibiotics in farmland.


Subject(s)
Glycine max , Nitrogen Fixation , Soil/chemistry , Rhizosphere , RNA, Ribosomal, 16S/genetics , Bacteria , Tetracycline , Anti-Bacterial Agents/toxicity , Nitrogen/analysis , Soil Microbiology , Plant Roots/microbiology
11.
Diagn Pathol ; 18(1): 133, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38066507

ABSTRACT

BACKGROUND: In adults with non-Hodgkin's lymphoma, renal enlargement and acute kidney injury occur infrequently at first presentation, especially in T lymphocytic lymphomas. CASE PRESENTATION: We report three cases of non-Hodgkin's lymphoma with acute renal injury and bilateral renal enlargement. At diagnosis, one patient presented with an adrenal mass, one patient's lymph node biopsy was consistent with a renal biopsy, and one patient had primary renal lymphoma with no extrarenal disease. Assessment of renal pathology in Case 2 and Case 3 showed interstitial lymphocyte infiltration; the pathological types were non-Hodgkin's diffuse large B lymphoma originating from activated B cells outside germinal centers and non-Hodgkin's T-lymphoblastic lymphoma/leukemia, respectively. Case 1 did not receive anti-lymphoma therapy and died from infection and multiple organ failure within 1 month of hospitalization. Case 2 received eight courses of R-CHOP; her lymphoma recurred 2 years after diagnosis and she died from severe pulmonary infection 3 years after diagnosis. Case 3 received hyper-CVAD regularly and achieved stable renal function; this patient remains under follow-up. CONCLUSIONS: Renal lymphoma may have diverse manifestations, especially primary renal lymphoma without extrarenal involvement. Nephrologists should pay careful attention to these manifestations to ensure accurate diagnosis.


Subject(s)
Acute Kidney Injury , Leukemia , Lymphoma, Non-Hodgkin , Lymphoma, T-Cell , Lymphoma , Adult , Female , Humans , Lymphoma, Non-Hodgkin/complications , Lymphoma, Non-Hodgkin/diagnosis , Lymphoma, Non-Hodgkin/pathology , Acute Kidney Injury/etiology
12.
Mar Biotechnol (NY) ; 25(6): 966-982, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37947961

ABSTRACT

As an opportunistic pathogen, Aeromonas veronii can cause hemorrhagic septicemia of various aquatic animals. In our present study, a dominant strain SJ4, isolated from naturally infected mandarin fish (Siniperca chuatsi), was identified as A. veronii according to the morphological, physiological, and biochemical features, as well as molecular identification. Intraperitoneal injection of A. veronii SJ4 into S. chuatsi revealed clinical signs similar to the natural infection, and the median lethal dosage (LD50) of the SJ4 to S. chuatsi in a week was 3.8 × 105 CFU/mL. Histopathological analysis revealed that the isolate SJ4 could cause cell enlargement, obvious hemorrhage, and inflammatory responses in S. chuatsi. Detection of virulence genes showed the isolate SJ4 carried act, fim, flgM, ompA, lip, hly, aer, and eprCAL, and the isolate SJ4 also produce caseinase, dnase, gelatinase, and hemolysin. In addition, the complete genome of A. veronii SJ4 was sequenced, and the size of the genome of A. veronii SJ4 was 4,562,694 bp, within a G + C content of 58.95%, containing 4079 coding genes. Nine hundred ten genes encoding for several virulence factors, such as type III and VI secretion systems, flagella, motility, etc., were determined based on the VFDB database. Besides, 148 antibiotic resistance-related genes in 27 categories related to tetracyclines, fluoroquinolones, aminoglycosides, macrolides, chloramphenicol, and cephalosporins were also annotated. The present results suggested that A. veronii was etiological agent causing the bacterial septicemia of S. chuatsi in this time, as well as provided a valuable base for revealing pathogenesis and resistance mechanism of A. veronii.


Subject(s)
Fish Diseases , Gram-Negative Bacterial Infections , Animals , Aeromonas veronii/genetics , Fishes , Virulence/genetics , Virulence Factors/genetics , Anti-Bacterial Agents , Gram-Negative Bacterial Infections/genetics , Fish Diseases/genetics
13.
Mar Biotechnol (NY) ; 25(3): 447-462, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37249812

ABSTRACT

Starvation is a common challenge for aquatic animals in both natural and cultured environments. To investigate the effects of starvation and refeeding on glucose metabolism and immunity in Macrobrachium rosenbergii, prawns were starved for 14 days and then refed for 7 days. Results showed that both glucose and trehalose levels decreased significantly at the beginning of starvation, followed by a significant decrease in glycogen content in the hepatopancreas and muscle. Triglyceride and total protein reserves were also mobilized under starvation, with a slightly quicker response from triglycerides. The mRNA levels of glycolysis (glucokinase) and anabolism-related enzymes (glycogen branching enzyme, diacylglycerol acyltransferase, and transpeptidase) decreased during starvation, while gluconeogenic potential was induced, as indicated by up-regulated transcriptional levels of gluconeogenic enzymes (phosphoenolpyruvate carboxykinase) and catabolism-related enzymes (glycogen debranching enzyme, adipose triglyceride lipase, and cathepsin B). Starvation also stimulated the expression of the crustacean hyperglycemic hormone and inhibited insulin-like peptide expression, indicating their potential role in glucose metabolism regulation. In addition, starvation increased the mRNA levels of superoxide dismutase and prophenoloxidase, indicating an influence on the immune system. After bacterial infection, starved prawns showed enhanced activity of non-specific immunological parameters and reduced mortality. Refeeding for 7 days led to a recovery of physiological and biochemical indices and transcriptional levels of metabolism/immune-related genes. Our findings provide a better understanding of the mechanisms underlying energy utilization, metabolic adaptation, and immune response to starvation in M. rosenbergii.


Subject(s)
Palaemonidae , Animals , Palaemonidae/genetics , Glucose/metabolism , Carbohydrate Metabolism , Insulin/metabolism , Immunity
14.
Eur J Immunol ; 53(8): e2250309, 2023 08.
Article in English | MEDLINE | ID: mdl-37146241

ABSTRACT

Mesothelin (MSLN) is a cell surface protein overexpressed in a number of cancer types. Several antibody- and cellular-based MSLN targeting agents have been tested in clinical trials where their therapeutic efficacy has been moderate at best. Previous studies using antibody and Chimeric Antigen Receptor-T cells (CAR-T) strategies have shown the importance of particular MSLN epitopes for optimal therapeutic response, while other studies have found that certain MSLN-positive tumors can produce proteins that can bind to subsets of IgG1-type antibodies and suppress their immune effector activities. In an attempt to develop an improved anti-MSLN targeting agent, we engineered a humanized divalent anti-MSLN/anti-CD3ε bispecific antibody that avoids suppressive factors, can target a MSLN epitope proximal to the tumor cell surface, and is capable of effectively binding, activating, and redirecting T cells to the surface of MSLN-positive tumor cells. NAV-003 has shown significantly improved tumor cell killing against lines producing immunosuppressive proteins in vitro and in vivo. Moreover, NAV-003 demonstrated good tolerability in mice and efficacy against patient-derived mesothelioma xenografts co-engrafted with human peripheral blood mononuclear cells. Together these data support the potential for NAV-003 clinical development and human proof-of-concept studies in patients with MSLN-expressing cancers.


Subject(s)
Leukocytes, Mononuclear , Mesothelin , Humans , Animals , Mice , GPI-Linked Proteins , Epitopes , Cell Line, Tumor , Disease Models, Animal
15.
Sensors (Basel) ; 23(5)2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36904691

ABSTRACT

With the aging of the social population structure, the number of empty-nesters is also increasing. Therefore, it is necessary to manage empty-nesters with data mining technology. This paper proposed an empty-nest power user identification and power consumption management method based on data mining. Firstly, an empty-nest user identification algorithm based on weighted random forest was proposed. Compared with similar algorithms, the results indicate that the performance of the algorithm is the best, and the identification accuracy of empty-nest users is 74.2%. Then a method for analyzing the electricity consumption behavior of empty-nest users based on fusion clustering index adaptive cosine K-means was proposed, which can adaptively select the optimal number of clusters. Compared with similar algorithms, the algorithm has the shortest running time, the smallest Sum of the Squared Error (SSE), and the largest mean distance between clusters (MDC), which are 3.4281 s, 31.6591 and 13.9513, respectively. Finally, an anomaly detection model with an Auto-regressive Integrated Moving Average (ARIMA) algorithm and an isolated forest algorithm was established. The case analysis shows that the recognition accuracy of abnormal electricity consumption for empty-nest users was 86%. The results indicate that the model can effectively detect the abnormal behavior of empty-nest power users and help the power department to better serve empty-nest users.

16.
Theor Appl Genet ; 136(4): 76, 2023 Mar 23.
Article in English | MEDLINE | ID: mdl-36952142

ABSTRACT

KEY MESSAGE: OsCYBDOMG1 positively regulates salt tolerance, plant growth, and grain yield by affecting ascorbate biosynthesis and redox state. Soil salinity is a major abiotic stress affecting rice growth and productivity. Many genes involved in the salt stress response have been identified, but the precise mechanisms underlying salt tolerance remain unclear. In this study, we isolated a salt-sensitive mutant of rice, rss5, which exhibited more severe wilting and chlorosis with a significant increase in lipid peroxidation, electrolyte leakage, and shoot Na+ concentration compared to wild-type plants. Map-based cloning, MutMap analysis, and genetic complementation revealed that a single-nucleotide mutation in a gene encoding a cytochrome b561 domain-containing protein (OsCYBDOMG1) was responsible for the mutant phenotype of rss5. The OsCYBDOMG1 gene was mainly expressed in young shoots and nodes, and the encoded protein was principally located in the plasma membrane and endoplasmic reticulum. Mutations of OsCYBDOMG1 resulted in decreased ascorbic acid (AsA) content and AsA/DHA (dehydroascorbate) ratio, which led to increased H2O2 accumulation and reduced salt tolerance. Moreover, plant growth and grain yield of rss5 and the OsCYBDOMG1 knockout mutant (cr-1) were significantly decreased compared to wild-type plants under normal conditions. The elite haplotype of OsCYBDOMG1 associated with higher salt tolerance and grain width and weight was mainly existed in japonica varieties. These results suggest that OsCYBDOMG1 plays an important role in the regulation of salt tolerance, plant growth, and grain yield in rice.


Subject(s)
Oryza , Salt Tolerance , Salt Tolerance/genetics , Hydrogen Peroxide/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/metabolism , Edible Grain/genetics , Edible Grain/metabolism , Gene Expression Regulation, Plant
17.
Cell Rep Med ; 4(2): 100938, 2023 02 21.
Article in English | MEDLINE | ID: mdl-36773602

ABSTRACT

Malignant mesothelioma is an aggressive cancer with limited treatment options and poor prognosis. A better understanding of mesothelioma genomics and transcriptomics could advance therapies. Here, we present a mesothelioma cohort of 122 patients along with their germline and tumor whole-exome and tumor RNA sequencing data as well as phenotypic and drug response information. We identify a 48-gene prognostic signature that is highly predictive of mesothelioma patient survival, including CCNB1, the expression of which is highly predictive of patient survival on its own. In addition, we analyze the transcriptomics data to study the tumor immune microenvironment and identify synthetic-lethality-based signatures predictive of response to therapy. This germline and somatic whole-exome sequencing as well as transcriptomics data from the same patient are a valuable resource to address important biological questions, including prognostic biomarkers and determinants of treatment response in mesothelioma.


Subject(s)
Lung Neoplasms , Mesothelioma, Malignant , Mesothelioma , Humans , Prognosis , Transcriptome , Lung Neoplasms/drug therapy , Mesothelioma/drug therapy , Mesothelioma/metabolism , Mesothelioma/pathology , Genomics , Tumor Microenvironment
18.
Fish Shellfish Immunol ; 132: 108487, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36503060

ABSTRACT

The outbreak of mass mortality of M. salmoides occurred in an aquaculture farm in Jiangsu province of China, showing signs of skin ulceration and haemorrhages. The bacteria were isolated from diseased largemouth bass, and identified as Plesiomonas shigelloides based on morphological, physiological and biochemical features, as well as 16S rRNA gene sequence analysis. The pathogenicity of P. shigelloides was determined by challenge experiments, and the median lethal dosage (LD50) of the isolate NJS1 for M. salmoides was calculated as 1.6 × 105 CFU/mL at 7 d post-infection. Histopathological analysis revealed that extensive necrosis, vacuolization and inflammation were presented in the kidney, liver and gill of the diseased fish. Detection of virulence-related genes showed that P. shigelloides NJS1 was positive for astA, astB, astD, astE, actP and 6 ahpA. Additionally, the host defensive response of M. salmoides infected by P. shigelloides was analyzed by quantitive real-time PCR (qRT-PCR), and the results showed that the expression levels of Cas3, Hep1, HIF, IgM, IL15 and TGF were significantly up-regulated in head kidney, liver and spleen in different hours post-infection, which revealed varying expression profiles and clear transcriptional activation of immune related genes. The results suggested that P. shigelloides was an etiological element in the mass mortalities of M. salmoides and this study provided deeper insights for the pathogenesis and host defensive system in P. shigelloides invasion.


Subject(s)
Bass , Plesiomonas , Animals , Plesiomonas/genetics , Virulence , RNA, Ribosomal, 16S/genetics , Immunity
19.
Plant Cell Environ ; 46(4): 1232-1248, 2023 04.
Article in English | MEDLINE | ID: mdl-36539986

ABSTRACT

The phosphatidylinositol-specific phospholipase Cs (PI-PLCs) catalyze the hydrolysis of phosphatidylinositols, which play crucial roles in signaling transduction during plant development and stress response. However, the regulation of PI-PLC is still poorly understood. A previous study showed that a rice PI-PLC, OsPLC1, was essential to rice salt tolerance. Here, we identified a 14-3-3 protein, OsGF14b, as an interaction partner of OsPLC1. Similar to OsPLC1, OsGF14b also positively regulates rice salt tolerance, and their interaction can be promoted by NaCl stress. OsGF14b also positively regulated the hydrolysis activity of OsPLC1, and is essential to NaCl-induced activation of rice PI-PLCs. We further discovered that OsPLC1 was degraded via ubiquitin-proteasome pathway, and OsGF14b could inhibit the ubiquitination of OsPLC1 to protect OsPLC1 from degradation. Under salt stress, the OsPLC1 protein level in osgf14b was lower than the corresponding value of WT, whereas overexpression of OsGF14b results in a significant increase of OsPLC1 stability. Taken together, we propose that OsGF14b can interact with OsPLC1 and promote its activity and stability, thereby improving rice salt tolerance. This study provides novel insights into the important roles of 14-3-3 proteins in regulating protein stability and function in response to salt stress.


Subject(s)
Oryza , Salt Tolerance , Salt Tolerance/physiology , 14-3-3 Proteins/metabolism , Oryza/physiology , Sodium Chloride/metabolism , Phosphatidylinositols/metabolism , Plant Proteins/metabolism , Gene Expression Regulation, Plant , Stress, Physiological
20.
Front Microbiol ; 13: 1030955, 2022.
Article in English | MEDLINE | ID: mdl-36439857

ABSTRACT

Enterobacter cloacae is widely distributed in the aquatic environment, and has been determined as a novel pathogen of various aquatic animals recently. Our previous studies have indicated E. cloacae caused repeated infections in Macrobrachium rosenbergii, suggesting a high survival ability of the bacteria, and rpoS gene has been known to regulate stress response and virulence of many bacteria. In this study, the E. cloacae-rpoS RNAi strain was constructed by RNAi technology, and the regulation role of rpoS in stress resistance and virulence of E. cloacae was explored by transcriptomic and phenotype analysis. The transcriptome analysis showed a total of 488 differentially expressed genes (DEGs) were identified between rpoS-RNAi and wild-type strains, including 30 up-regulated genes and 458 down-regulated genes, and these down-regulated DEGs were mainly related to environmental response, biofilm formation, bacterial type II secretory system, flagellin, fimbrillin, and chemotactic protein which associated with bacterial survival and virulence. The phenotype changes also showed the E. cloacae-rpoS RNAi strain exhibited significantly decreasing abilities of survival in environmental stresses (starvation, salinity, low pH, and oxidative stress), biofilm production, movement, adhesion to cells, pathogenicity, and colonization to M. rosenbergii. These results reveal that rpoS plays an important regulatory role in environmental stress adaptation and virulence of E. cloacae.

SELECTION OF CITATIONS
SEARCH DETAIL
...