Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 852: 158518, 2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36063926

ABSTRACT

Undiluted dairy farm liquid digestate contains high levels of organic matters, chromaticity and total ammonia nitrogen (TAN), resulting in inhibition to microalgal growth. In this study, a novel cascade pretreatment with ozonation and ammonia stripping (O + S) was employed to remove these inhibitors, and was compared with single pretreatment approach. The optimum parameters for ozonation and ammonia stripping were obtained and the mechanisms of inhibition elimination were investigated. The results show that ozonation contributed to the degradation of non-fluorescent chromophoric organics through the direct molecular ozone attack, which mitigated the inhibition of chromaticity to microalgae, while ammonia stripping relieved the inhibition of high TAN to microalgae. After cascade pretreatment, TAN, total nitrogen (TN), COD and chromaticity were reduced by 80.2 %, 75.4 %, 20.6 % and 75.8 % respectively. When C. vulgaris was cultured on different pretreated digestate, it was found that cascade pretreatment was beneficial for retaining high PSII activity and synergistically improved microalgal growth. The highest biomass increment and productivity achieved 5.40 g L-1 and 900 mg L-1 d-1 respectively in the integration system of cascade pretreatment with microalgae cultivation (O + S + M). After O + S + M treatment, the removal efficiencies of TAN, TN, COD and total phosphorus (TP) were 100 %, 92.8 %, 46.7 % and 99.6 %, respectively. This work provided a promising strategy (O + S + M) for sustainable liquid digestate treatment, along with nutrient recovery and value-added biomass production.


Subject(s)
Chlorella vulgaris , Environmental Pollutants , Microalgae , Ozone , Ammonia , Biomass , Chlorella vulgaris/metabolism , Farms , Microalgae/metabolism , Nitrogen/analysis , Phosphorus , Wastewater
2.
J Hazard Mater ; 431: 128656, 2022 Jun 05.
Article in English | MEDLINE | ID: mdl-35359107

ABSTRACT

The fate and emission behavior of heavy metals (As, Cd, Co, Cr, Cu, Ni, Pb, Se, and Zn) from a hazardous chemical waste incinerator were systematically explored. The results show that the main components of incineration fly ashes and slags contain minerals such as salt, plagioclase, pyroxene, gypsum, calcite, and slaked lime. The elements As, Cd, Pb, and Se are enriched in the fly ash particles during flue gas condensation. Co and Ni are more likely to be deposited in the rotary kiln slag and cooling tower slag owing to their lower volatility. Zn, Cr, and Cu are usually volatilized into the flue gas as oxides or chlorides are condensed and enriched in the slag of the cooling tower during the flue gas cooling process. The content of As, Cd, Pb, Ni, Cr, and Se increase with decreasing fly ash particle size. After the flue gas purification equipment was employed, the concentration of particulate metals significantly reduced. In the exhaust flue gas, the concentrations of Cu and Zn are 29.85 and 28.47 µg/m3, those of As, Cr, Ni, Pb, and Se range from 2.54 to 9.25 µg/m3, and those of Co and Cd are 0.42 and 0.13 µg/m3, respectively.

3.
Bioresour Technol ; 325: 124690, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33465643

ABSTRACT

Although ammonium containing digestate is an ideal alternative medium for microalgae cultivation, high ammonium or unfavorable pH may inhibit microalgal growth. In this study, the joint effect of ammonium and pH on the growth of C. vulgaris and nutrient removal in artificial digestate was investigated. Our results show that ammonium and pH both affected algal growth, but free ammonia (FA) was the main actual inhibitory factor. Algal specific growth rate presented a negative correlation with FA and their relationship was well fitted by a linear regression model. Microalgal growth was little affected below 36.8 mg L-1 FA, while the obvious inhibition occurred at 184 mg L-1 FA (EC50), indicating a high tolerance to FA. Ammonium removal was well described by a first-order kinetics model. FA stress stimulated the production of extracellular organic matters (EOMs), which was good for microalgae adaptation but adverse to pollutant removal.


Subject(s)
Ammonium Compounds , Chlorella vulgaris , Microalgae , Biomass , Hydrogen-Ion Concentration , Wastewater/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...