Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Immunology ; 170(4): 553-566, 2023 12.
Article in English | MEDLINE | ID: mdl-37688495

ABSTRACT

Rheumatoid arthritis is a chronic and systemic inflammatory disease that affects approximately 1% of the world's population and is characterised by joint inflammation, the destruction of articular cartilage and bone, and many potentially life-threatening extraarticular manifestations. B lymphocytes play a central role in the pathology of rheumatoid arthritis as the precursors of autoantibody secreting plasma cells, as highly potent antigen-presenting cells, and as a source of various inflammatory cytokines, however, the effects of rheumatoid arthritis on B lymphocyte development remain poorly understood. Here, we analyse B lymphocyte development in murine models of rheumatoid arthritis, quantifying all the subsets of B cell precursors in the bone marrow and splenic B cells using flow cytometry. We demonstrate a severe reduction in pre-B cells and immature B cells in the bone marrow of mice with active disease, despite no major effects on the mature naïve B cell numbers. The loss of B cell precursors in the bone marrow of the affected mice was associated with a highly significant reduction in the proportion of Ki67+ cells, indicating impaired cell proliferation, while the viability of the B cell precursors was not significantly affected. We also observed some mobilisation of the B cell precursor cells into the mouse spleen, demonstrated with flow cytometry and pre-B colony forming units assays. In summary, the current work demonstrates a severe dysregulation in B lymphocyte development in murine rheumatoid arthritis, with possible implications for B cell repertoire formation, tolerance induction, and disease mechanisms.


Subject(s)
Arthritis, Experimental , Arthritis, Rheumatoid , Mice , Animals , Disease Models, Animal , B-Lymphocytes , Immune Tolerance
2.
J Cereb Blood Flow Metab ; 43(6): 843-855, 2023 06.
Article in English | MEDLINE | ID: mdl-36703604

ABSTRACT

CD36 expressed in multiple cell types regulates inflammation, vascular function, and innate immunity. Specifically, CD36 in microvascular endothelial cells (ECs) signals to elicit inflammation and causes EC death. This study investigated roles for EC-CD36 on acute stroke pathology in normal and obese conditions. Obesity induced by a high-fat diet (HD) selectively increased CD36 expression in ECs, not in monocytes/macrophages, in the post-ischemic brain. Mice deficient CD36 in ECs (ECCD36-/-) showed reduced injury size and vascular permeability in normal conditions. While control mice fed a HD developed obesity and aggravated stroke injury, ECCD36-/- mice were resistant to develop an obesity phenotype. Subjecting ECCD36-/- mice to stroke resulted in reduced injury size and BBB disruption. Moreover, the mice had reduced MCP-1 and CCR2 gene expression, resulting in reduced monocyte trafficking with improved survival and acute motor function. Reduced MCP-1 and CCR2 expression was still evident in ECCD36-/- mice subjected to severe stroke, suggesting that monocyte trafficking is an infarct-independent metabolic effect associated with specific EC-CD36 deletion. Our findings demonstrate the importance of EC-CD36 in developing vascular comorbidities and suggest that targeting EC-CD36 is a potential preventative strategy to normalize vascular risk factors, leading to improved acute stroke outcomes.


Subject(s)
Brain Injuries , Stroke , Mice , Animals , Monocytes/metabolism , Endothelial Cells/metabolism , Stroke/pathology , Brain Injuries/metabolism , Inflammation/pathology , Obesity/complications , Obesity/metabolism , Mice, Inbred C57BL
3.
Nat Commun ; 11(1): 3702, 2020 07 24.
Article in English | MEDLINE | ID: mdl-32710081

ABSTRACT

Spinal cord injury (SCI) causes immune dysfunction, increasing the risk of infectious morbidity and mortality. Since bone marrow hematopoiesis is essential for proper immune function, we hypothesize that SCI disrupts bone marrow hematopoiesis. Indeed, SCI causes excessive proliferation of bone marrow hematopoietic stem and progenitor cells (HSPC), but these cells cannot leave the bone marrow, even after challenging the host with a potent inflammatory stimulus. Sequestration of HSPCs in bone marrow after SCI is linked to aberrant chemotactic signaling that can be reversed by post-injury injections of Plerixafor (AMD3100), a small molecule inhibitor of CXCR4. Even though Plerixafor liberates HSPCs and mature immune cells from bone marrow, competitive repopulation assays show that the intrinsic long-term functional capacity of HSPCs is still impaired in SCI mice. Together, our data suggest that SCI causes an acquired bone marrow failure syndrome that may contribute to chronic immune dysfunction.


Subject(s)
Bone Marrow Failure Disorders/etiology , Bone Marrow/metabolism , Spinal Cord Injuries/complications , Animals , Benzylamines , Bone Marrow/pathology , Bone Marrow Cells , Bone Marrow Failure Disorders/pathology , Cell Proliferation , Chemokine CXCL12 , Cyclams , Disease Models, Animal , Female , Hematopoiesis , Hematopoietic Stem Cells/metabolism , Heterocyclic Compounds/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Mice, Transgenic , Receptors, CXCR4/antagonists & inhibitors , Signal Transduction , Spinal Cord Injuries/immunology
4.
Sci Rep ; 9(1): 19105, 2019 12 13.
Article in English | MEDLINE | ID: mdl-31836828

ABSTRACT

Humanized mice can be used to better understand how the human immune system responds to central nervous system (CNS) injury and inflammation. The optimal parameters for using humanized mice in preclinical CNS injury models need to be established for appropriate use and interpretation. Here, we show that the developmental age of the human immune system significantly affects anatomical and functional outcome measures in a preclinical model of traumatic spinal cord injury (SCI). Specifically, it takes approximately 3-4 months for a stable and functionally competent human immune system to develop in neonatal immune compromised mice after they are engrafted with human umbilical cord blood stem cells. Humanized mice receiving a SCI before or after stable engraftment exhibit significantly different neuroinflammatory profiles. Importantly, the development of a mature human immune system was associated with worse lesion pathology and neurological recovery after SCI. In these mice, human T cells infiltrate the spinal cord lesion and directly contact human macrophages. Together, data in this report establish an optimal experimental framework for using humanized mice to help translate promising preclinical therapies for CNS injury.


Subject(s)
Cord Blood Stem Cell Transplantation , Spinal Cord Injuries/immunology , Spinal Cord Injuries/therapy , Animals , Disease Models, Animal , Female , Fetal Blood/cytology , Humans , Immune System , Inflammation , Lipopolysaccharides , Lymphocytes/cytology , Macrophages/cytology , Male , Mice , Mice, Inbred C57BL , Mice, Inbred NOD , Spinal Cord/pathology , Spleen/cytology , T-Lymphocytes, Cytotoxic/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...