Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(17)2020 Aug 30.
Article in English | MEDLINE | ID: mdl-32872595

ABSTRACT

The intrinsic heterogeneity property of concrete causes strong multiple scatterings during wave propagation, forming coda wave that follows very complex trajectories. As a superposition of multiply scattered waves, coda wave shows great sensitivity to subtle changes, but meanwhile lose spatial resolution. To make use of its sensitivity and turn the limitation into advantage, this paper presents an experimental study of three-dimensionally imaging local changes in concrete by application of inverse algorithms to coda wave measurements. Load tests are performed on a large reinforced concrete beam that contains multiple pre-existing millimeter-scale cracks in order to match real life situation. The joint effects of cracks and stresses on coda waves have been monitored using a network of fixed transducers placed at the surface. The global waveform decorrelations and velocity variations are firstly quantified through coda wave interferometry technique. Subsequently, two inverse algorithms are independently applied to map the densities of changes at each localized position. Using this methodology, the stress changes and subtle cracks in the concrete beam are detected and imaged for both temporal and spatial domains.

2.
Sensors (Basel) ; 20(14)2020 Jul 20.
Article in English | MEDLINE | ID: mdl-32698520

ABSTRACT

This article presents an experimental study of estimating stresses in concrete by applications of coda wave interferometry to establish an acoustoelastic modulus database. Under well-controlled laboratory conditions, uniaxial load cycles were performed on three groups of 15 × 15 × 35-cm concrete prisms, with ultrasonic signals being collected continuously. Then, the coda wave interferometry technique, together with acoustoelastic and Kaiser theories, are utilized to analyze the stress-velocity relations for the distinct ranges before and after historical maximum loads, forming an acoustoelastic modulus database. When applied to different concrete samples, their stresses are estimated with a high degree of accuracy. This study could be used to promote the development of novel nondestructive techniques that aid in structural stress monitoring.

3.
Sensors (Basel) ; 20(14)2020 Jul 13.
Article in English | MEDLINE | ID: mdl-32668668

ABSTRACT

Neutral axis passing through the stiffness centroid of a structure is correlated with structural health conditions. Traditional techniques rely on gauge arrays to observe strains at their installation positions, and then locate a neutral axis through the intercept of the strain diagram. However, these localization results will be severely deviated if any damages exist among gauges or inside structures. In this paper, a novel technique is proposed to locate the neutral axis by measuring and analyzing ultrasonic coda waves in a network of transducers. Because of multiple trajectories, coda waves are sensitive to minor changes in a large volume of media that are not limited to direct paths between sensors. This technique is not only capable of locating a neutral axis with great efficiency and accuracy, but can also indicate global structural health and inner damages. The applicability of the technique is demonstrated by monitoring a 30 m concrete T-beam subjected to four-point loading tests. With an array of transducers placed at the surface, the neutral axes in the large region are located. The localization results also show clear trends that the global neutral axis moves up as the loads increase, which indicates the beam contains certain degrees of inner damage.

SELECTION OF CITATIONS
SEARCH DETAIL
...