Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Refract Surg ; 40(3): e126-e132, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38466764

ABSTRACT

PURPOSE: To use artificial intelligence (AI) technology to accurately predict vault and Implantable Collamer Lens (ICL) size. METHODS: The methodology focused on enhancing predictive capabilities through the fusion of machine-learning algorithms. Specifically, AdaBoost, Random Forest, Decision Tree, Support Vector Regression, LightGBM, and XGBoost were integrated into a majority-vote model. The performance of each model was evaluated using appropriate metrics such as accuracy, precision, F1-score, and area under the curve (AUC). RESULTS: The majority-vote model exhibited the highest performance among the classification models, with an accuracy of 81.9% area under the curve (AUC) of 0.807. Notably, LightGBM (accuracy = 0.788, AUC = 0.803) and XGBoost (ACC = 0.790, AUC = 0.801) demonstrated competitive results. For the ICL size prediction, the Random Forest model achieved an impressive accuracy of 85.3% (AUC = 0.973), whereas XG-Boost (accuracy = 0.834, AUC = 0.961) and LightGBM (accuracy = 0.816, AUC = 0.961) maintained their compatibility. CONCLUSIONS: This study highlights the potential of diverse machine learning algorithms to enhance postoperative vault and ICL size prediction, ultimately contributing to the safety of ICL implantation procedures. Furthermore, the introduction of the novel majority-vote model demonstrates its capability to combine the advantages of multiple models, yielding superior accuracy. Importantly, this study will empower ophthalmologists to use a precise tool for vault prediction, facilitating informed ICL size selection in clinical practice. [J Refract Surg. 2024;40(3):e126-e132.].


Subject(s)
Lenses, Intraocular , Phakic Intraocular Lenses , Humans , Artificial Intelligence , Machine Learning , Algorithms , Area Under Curve , Retrospective Studies
2.
Graefes Arch Clin Exp Ophthalmol ; 262(7): 2329-2336, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38376562

ABSTRACT

PURPOSE: This study aims to assess the accuracy of three parameters (white-to-white distance [WTW], angle-to-angle [ATA], and sulcus-to-sulcus [STS]) in predicting postoperative vault and to formulate an optimized predictive model. METHODS: In this retrospective study, a cohort of 465 patients (comprising 769 eyes) who underwent the implantation of the V4c implantable Collamer lens with a central port (ICL) for myopia correction was examined. Least absolute shrinkage and selection operator (LASSO) regression and classification models were used to predict postoperative vault. The influences of WTW, ATA, and STS on predicting the postoperative vault and ICL size were analyzed and compared. RESULTS: The dataset was randomly divided into training (80%) and test (20%) sets, with no significant differences observed between them. The screened variables included only seven variables which conferred the largest signal in the model, namely, lens thickness (LT, estimated coefficients for logistic least absolute shrinkage of -0.20), STS (-0.04), size (0.08), flat K (-0.006), anterior chamber depth (0.15), spherical error (-0.006), and cylindrical error (-0.0008). The optimal prediction model depended on STS (R2=0.419, RMSE=0.139), whereas the least effective prediction model relied on WTW (R2=0.395, RMSE=0.142). In the classified prediction models of the vault, classification prediction of the vault based on STS exhibited superior accuracy compared to ATA or WTW. CONCLUSIONS: This study compared the capabilities of WTW, ATA, and STS in predicting postoperative vault, demonstrating that STS exhibits a stronger correlation than the other two parameters.


Subject(s)
Lens Implantation, Intraocular , Myopia , Phakic Intraocular Lenses , Refraction, Ocular , Visual Acuity , Humans , Retrospective Studies , Myopia/surgery , Myopia/physiopathology , Male , Female , Adult , Postoperative Period , Refraction, Ocular/physiology , Young Adult , Anterior Chamber/pathology , Anterior Chamber/diagnostic imaging , Biometry/methods , Follow-Up Studies , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...