Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Anal ; 14(1): 128-139, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38352953

ABSTRACT

Pharmacological perturbation studies based on protein-level signatures are fundamental for drug discovery. In the present study, we used a mass spectrometry (MS)-based proteomic platform to profile the whole proteome of the breast cancer MCF7 cell line under stress induced by 78 bioactive compounds. The integrated analysis of perturbed signal abundance revealed the connectivity between phenotypic behaviors and molecular features in cancer cells. Our data showed functional relevance in exploring the novel pharmacological activity of phenolic xanthohumol, as well as the noncanonical targets of clinically approved tamoxifen, lovastatin, and their derivatives. Furthermore, the rational design of synergistic inhibition using a combination of histone methyltransferase and topoisomerase was identified based on their complementary drug fingerprints. This study provides rich resources for the proteomic landscape of drug responses for precision therapeutic medicine.

2.
Genomics Proteomics Bioinformatics ; 20(4): 597-613, 2022 Aug.
Article in English | MEDLINE | ID: mdl-33607295

ABSTRACT

AMP-activated protein kinase (AMPK) is a conserved energy sensor that plays roles in diverse biological processes via phosphorylating various substrates. Emerging studies have demonstrated the regulatory roles of AMPK in DNA repair, but the underlying mechanisms remain to be fully understood. Herein, using mass spectrometry-based proteomic technologies, we systematically investigate the regulatory network of AMPK in DNA damage response (DDR). Our system-wide phosphoproteome study uncovers a variety of newly-identified potential substrates involved in diverse biological processes, whereas our system-wide histone modification analysis reveals a link between AMPK and histone acetylation. Together with these findings, we discover that AMPK promotes apoptosis by phosphorylating apoptosis-stimulating of p53 protein 2 (ASPP2) in an irradiation (IR)-dependent manner and regulates histone acetylation by phosphorylating histone deacetylase 9 (HDAC9) in an IR-independent manner. Besides, we reveal that disrupting the histone acetylation by the bromodomain BRD4 inhibitor JQ-1 enhances the sensitivity of AMPK-deficient cells to IR. Therefore, our study has provided a resource to investigate the interplay between phosphorylation and histone acetylation underlying the regulatory network of AMPK, which could be beneficial to understand the exact role of AMPK in DDR.


Subject(s)
AMP-Activated Protein Kinases , Histones , AMP-Activated Protein Kinases/metabolism , Histones/metabolism , Nuclear Proteins/metabolism , Acetylation , Proteomics , Transcription Factors/metabolism , Phosphorylation/physiology , DNA Damage
3.
Mol Cell ; 81(19): 4076-4090.e8, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34375582

ABSTRACT

KRAS mutant cancer, characterized by the activation of a plethora of phosphorylation signaling pathways, remains a major challenge for cancer therapy. Despite recent advancements, a comprehensive profile of the proteome and phosphoproteome is lacking. This study provides a proteomic and phosphoproteomic landscape of 43 KRAS mutant cancer cell lines across different tissue origins. By integrating transcriptomics, proteomics, and phosphoproteomics, we identify three subsets with distinct biological, clinical, and therapeutic characteristics. The integrative analysis of phosphoproteome and drug sensitivity information facilitates the identification of a set of drug combinations with therapeutic potentials. Among them, we demonstrate that the combination of DOT1L and SHP2 inhibitors is an effective treatment specific for subset 2 of KRAS mutant cancers, corresponding to a set of TCGA clinical tumors with the poorest prognosis. Together, this study provides a resource to better understand KRAS mutant cancer heterogeneity and identify new therapeutic possibilities.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols/pharmacology , Enzyme Inhibitors/pharmacology , Mutation , Neoplasms/drug therapy , Phosphoproteins/metabolism , Proteome , Proteomics , Proto-Oncogene Proteins p21(ras)/genetics , Animals , Cell Line, Tumor , Databases, Genetic , Drug Synergism , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Guanine Nucleotide Exchange Factors/genetics , Guanine Nucleotide Exchange Factors/metabolism , Histone-Lysine N-Methyltransferase/antagonists & inhibitors , Histone-Lysine N-Methyltransferase/metabolism , Humans , Mass Spectrometry , Mice, Inbred BALB C , Mice, Nude , Mitogen-Activated Protein Kinases/metabolism , Molecular Targeted Therapy , Neoplasms/genetics , Neoplasms/metabolism , Neoplasms/pathology , Phosphoproteins/genetics , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Protein Tyrosine Phosphatase, Non-Receptor Type 11/metabolism , Signal Transduction , Transcriptome , Xenograft Model Antitumor Assays
4.
Cell Rep ; 34(7): 108713, 2021 02 16.
Article in English | MEDLINE | ID: mdl-33596428

ABSTRACT

AMP-activated protein kinase (AMPK) is an energy sensor that plays roles in multiple biological processes beyond metabolism. Several studies have suggested that AMPK is involved in the DNA damage response (DDR), but the mechanisms remain unclear. Herein, we demonstrate that AMPK promotes classic non-homologous end joining (c-NHEJ) in double-strand break (DSB) repair through recruiting a key chromatin-based mediator named p53-binding protein 1 (53BP1), which facilitates the end joining of distal DNA ends during DDR. We find that the interaction of AMPK and 53BP1 spatially occurs under DSB stress. In the context of DSBs, AMPK directly phosphorylates 53BP1 at Ser1317 and promotes 53BP1 recruitment during DDR for an efficient c-NHEJ, thus maintaining genomic stability and diversity of the immune repertoire. Taken together, our study demonstrates that AMPK is a regulator of 53BP1 and controls c-NHEJ choice by phospho-regulation.


Subject(s)
AMP-Activated Protein Kinases/metabolism , DNA End-Joining Repair , Tumor Suppressor p53-Binding Protein 1/metabolism , Genomic Instability , Humans , Phosphorylation
5.
Cell ; 182(1): 245-261.e17, 2020 07 09.
Article in English | MEDLINE | ID: mdl-32649877

ABSTRACT

Genomic studies of lung adenocarcinoma (LUAD) have advanced our understanding of the disease's biology and accelerated targeted therapy. However, the proteomic characteristics of LUAD remain poorly understood. We carried out a comprehensive proteomics analysis of 103 cases of LUAD in Chinese patients. Integrative analysis of proteome, phosphoproteome, transcriptome, and whole-exome sequencing data revealed cancer-associated characteristics, such as tumor-associated protein variants, distinct proteomics features, and clinical outcomes in patients at an early stage or with EGFR and TP53 mutations. Proteome-based stratification of LUAD revealed three subtypes (S-I, S-II, and S-III) related to different clinical and molecular features. Further, we nominated potential drug targets and validated the plasma protein level of HSP 90ß as a potential prognostic biomarker for LUAD in an independent cohort. Our integrative proteomics analysis enables a more comprehensive understanding of the molecular landscape of LUAD and offers an opportunity for more precise diagnosis and treatment.


Subject(s)
Adenocarcinoma of Lung/metabolism , Lung Neoplasms/metabolism , Proteomics , Adenocarcinoma of Lung/genetics , Asian People/genetics , Biomarkers, Tumor/genetics , Biomarkers, Tumor/metabolism , Drug Delivery Systems , Female , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/genetics , Male , Middle Aged , Mutation/genetics , Neoplasm Staging , Phosphoproteins/metabolism , Principal Component Analysis , Prognosis , Proteome/metabolism , Treatment Outcome , Tumor Suppressor Protein p53/genetics
6.
Nat Commun ; 9(1): 4770, 2018 11 13.
Article in English | MEDLINE | ID: mdl-30425250

ABSTRACT

Ubiquitin-specific protease 14 (USP14) is one of the major proteasome-associated deubiquitinating enzymes critical for proteome homeostasis. However, substrates of USP14 remain largely unknown, hindering the understanding of its functional roles. Here we conduct a comprehensive proteome, ubiquitinome and interactome analysis for USP14 substrate screening. Bioinformatics analysis reveals broad new potential roles of USP14, especially in lipid and carbohydrate metabolism. Among the potential substrates identified, we show that fatty acid synthase (FASN), a key enzyme involved in hepatic lipogenesis, is a bona fide substrate of USP14. USP14 directly interacts with and increases FASN stability. As a result, overexpression of USP14 promotes liver triglyceride accumulation in C57BL/6 mice, whereas genetic ablation or pharmacological inhibition of USP14 ameliorates hepatosteatosis, hyperglycemia and insulin resistance in obese mice. In conclusion, our findings reveal for the first time an indispensable role of USP14 in hepatosteatosis through FASN stabilization.


Subject(s)
Fatty Acid Synthases/metabolism , Proteome , Ubiquitin Thiolesterase/metabolism , Animals , Carbohydrate Metabolism , Computational Biology , Gene Knockdown Techniques , Homeostasis , Humans , Hyperglycemia , Insulin Resistance , Lipogenesis , Liver/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Obese , Triglycerides/analysis , Ubiquitin Thiolesterase/genetics , Up-Regulation
7.
EMBO J ; 36(13): 1963-1980, 2017 07 03.
Article in English | MEDLINE | ID: mdl-28507225

ABSTRACT

Tissue homeostasis of skin is sustained by epidermal progenitor cells localized within the basal layer of the skin epithelium. Post-translational modification of the proteome, such as protein phosphorylation, plays a fundamental role in the regulation of stemness and differentiation of somatic stem cells. However, it remains unclear how phosphoproteomic changes occur and contribute to epidermal differentiation. In this study, we survey the epidermal cell differentiation in a systematic manner by combining quantitative phosphoproteomics with mammalian kinome cDNA library screen. This approach identified a key signaling event, phosphorylation of a desmosome component, PKP1 (plakophilin-1) by RIPK4 (receptor-interacting serine-threonine kinase 4) during epidermal differentiation. With genome-editing and mouse genetics approach, we show that loss of function of either Pkp1 or Ripk4 impairs skin differentiation and enhances epidermal carcinogenesis in vivo Phosphorylation of PKP1's N-terminal domain by RIPK4 is essential for their role in epidermal differentiation. Taken together, our study presents a global view of phosphoproteomic changes that occur during epidermal differentiation, and identifies RIPK-PKP1 signaling as novel axis involved in skin stratification and tumorigenesis.


Subject(s)
Cell Differentiation , Keratinocytes/physiology , Plakophilins/metabolism , Protein Processing, Post-Translational , Protein Serine-Threonine Kinases/metabolism , Skin/cytology , Stem Cells/physiology , Animals , Carcinogenesis , Cells, Cultured , Gene Expression Profiling , Mice , Mice, Knockout , Phosphorylation , Proteome/analysis , Skin Neoplasms , Tissue Transplantation
8.
Mol Cell Proteomics ; 16(7): 1324-1334, 2017 07.
Article in English | MEDLINE | ID: mdl-28450421

ABSTRACT

Type 2 diabetes (T2D) is a major chronic healthcare concern worldwide. Emerging evidence suggests that a histone-modification-mediated epigenetic mechanism underlies T2D. Nevertheless, the dynamics of histone marks in T2D have not yet been carefully analyzed. Using a mass spectrometry-based label-free and chemical stable isotope labeling quantitative proteomic approach, we systematically profiled liver histone post-translational modifications (PTMs) in a prediabetic high-fat diet-induced obese (DIO) mouse model. We identified 170 histone marks, 30 of which were previously unknown. Interestingly, about 30% of the histone marks identified in DIO mouse liver belonged to a set of recently reported lysine acylation modifications, including propionylation, butyrylation, malonylation, and succinylation, suggesting possible roles of these newly identified histone acylations in diabetes and obesity. These histone marks were detected without prior affinity enrichment with an antibody, demonstrating that the histone acylation marks are present at reasonably high stoichiometry. Fifteen histone marks differed in abundance in DIO mouse liver compared with liver from chow-fed mice in label-free quantification, and six histone marks in stable isotope labeling quantification. Analysis of hepatic histone modifications from metformin-treated DIO mice revealed that metformin, a drug widely used for T2D, could reverse DIO-stimulated histone H3K36me2 in prediabetes, suggesting that this mark is likely associated with T2D development. Our study thus offers a comprehensive landscape of histone marks in a prediabetic mouse model, provides a resource for studying epigenetic functions of histone modifications in obesity and T2D, and suggest a new epigenetic mechanism for the physiological function of metformin.


Subject(s)
Diet, High-Fat/adverse effects , Histones/metabolism , Liver/metabolism , Obesity/chemically induced , Proteomics/methods , Acylation/drug effects , Animals , Disease Models, Animal , Epigenesis, Genetic , Histone Code , Histones/drug effects , Isotope Labeling , Mass Spectrometry , Metformin/pharmacology , Mice , Mice, Obese , Obesity/metabolism , Protein Processing, Post-Translational/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...