Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 262(Pt 2): 130108, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38346620

ABSTRACT

Active food packaging with controlled release behavior of volatile antimicrobials is highly desirable for enhancing the quality of fresh produce. In this study, humidity-responsive antimicrobial aerogels were developed using chitosan and dialdehyde nanocellulose, loading with cyclodextrin-cinnamaldehyde inclusion complexes (ICs) for achieving humidity-triggered release of the encapsulated antimicrobial agent. Results showed that the prepared aerogels had capable water absorption ability, which could be served as absorbent pads to take in excessive exudate from packaged fresh produce. More importantly, the accumulative release rate of cinnamaldehyde from the antimicrobial aerogels was significantly improved at RH 98 % compared to that at RH 70 %, which accordingly inactivated all the inoculated Escherichia coli, Staphylococcus aureus and Botrytis cinerea. Additionally, strawberries packaged with the antimicrobial aerogels remained in good conditions after 5 d of storage at 22 ± 1 °C. The prepared composite aerogels had the potential to extend the shelf life of fresh strawberries.


Subject(s)
Acrolein/analogs & derivatives , Anti-Infective Agents , Fragaria , Humidity , Anti-Infective Agents/pharmacology , Acrolein/pharmacology , Food Packaging/methods , Escherichia coli
2.
Chemosphere ; 346: 140524, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37923017

ABSTRACT

Foodborne pathogens can cause food spoilage and lead to food safety issues. In recent years, food packaging has received a lot of attention. Traditional packaging membranes are non-biodegradable and remain in the environment for a long time. In this study, natural antimicrobial substances were extracted from Schisandra chinensis by a green extraction process using distilled water as the solvent, and the effects of different treatment on the antimicrobial activity of the extract were compared. At the same time, four types of Schisandra chinensis antimicrobial membranes were prepared using polyvinyl alcohol (PVA) as the substrate. The whole extraction and membrane preparation process did not involve organic solvents, making the process green and environment friendly. Material characterization included inverted biological microscopy, scanning electron microscopy (SEM), atomic force microscopy (AFM), Fourier transform infrared spectroscopy (FTIR), tensile strength test, pore size measurement, water uptake test, etc. Among them, no extract particles were observed with the naked eye on the surfaces of MⅡ and MⅣ. MⅡ has a uniformly transparent, nearly colorless morphology and is the most tensile. MⅣ surface is flat and smooth, the microstructure is dense and uniform. At the same time, the four types of membranes were tested against common pathogenic bacteria for 12 h, and the OD600 trend revealed the excellent antimicrobial activity of the membranes against S. aureus, MRSA, E. coli, and L. monocytogenes. The membranes could also be reused at least once. This study provides a new idea for preparing natural plant-based antimicrobial membranes.


Subject(s)
Anti-Infective Agents , Schisandra , Polyvinyl Alcohol/chemistry , Staphylococcus aureus , Schisandra/chemistry , Escherichia coli , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Infective Agents/chemistry , Solvents , Water/pharmacology , Spectroscopy, Fourier Transform Infrared
3.
J Agric Food Chem ; 71(33): 12372-12389, 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37565661

ABSTRACT

Unreasonable application of pesticides may result in residues in the environment and foods. Chiral pesticides consist of two or more enantiomers, which may exhibit different behaviors. This Review intends to provide progress on the enantioselective residues of chiral pesticides in foods. Among the main chiral analytical methods, high performance liquid chromatography (HPLC) is the most frequently utilized. Most chiral pesticides are utilized as racemates; however, due to enantioselective dissipation, bioaccumulation, biodegradation, and chiral conversion, enantiospecific residues have been found in the environment and foods. Some chiral pesticides exhibit strong enantioselectivity, highlighting the importance of evaluation on an enantiomeric level. However, the occurrence characteristics of chiral pesticides in foods and specific enzymes or transport proteins involved in enantioselectivity needs to be further investigated. This Review could help the production of some chiral pesticides to single-enantiomer formulations, thereby reducing pesticide consumption as well as increasing food production and finally reducing human health risks.


Subject(s)
Pesticides , Humans , Pesticides/chemistry , Stereoisomerism , Chromatography, High Pressure Liquid , Food
4.
Environ Sci Pollut Res Int ; 30(33): 79627-79653, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37322403

ABSTRACT

Aflatoxins have posed serious threat to food safety and human health. Therefore, it is important to detect aflatoxins in samples rapidly and accurately. In this review, various technologies to detect aflatoxins in food are discussed, including conventional ones such as thin-layer chromatography (TLC), high performance liquid chromatography (HPLC), enzyme linked immunosorbent assay (ELISA), colloidal gold immunochromatographic assay (GICA), radioimmunoassay (RIA), fluorescence spectroscopy (FS), as well as emerging ones (e.g., biosensors, molecular imprinting technology, surface plasmon resonance). Critical challenges of these technologies include high cost, complex processing procedures and long processing time, low stability, low repeatability, low accuracy, poor portability, and so on. Critical discussion is provided on the trade-off relationship between detection speed and detection accuracy, as well as the application scenario and sustainability of different technologies. Especially, the prospect of combining different technologies is discussed. Future research is necessary to develop more convenient, more accurate, faster, and cost-effective technologies to detect aflatoxins.


Subject(s)
Aflatoxins , Humans , Aflatoxins/analysis , Enzyme-Linked Immunosorbent Assay/methods , Chromatography, High Pressure Liquid , Immunoassay , Chromatography, Thin Layer , Food Contamination/analysis
5.
Sci Total Environ ; 882: 163565, 2023 Jul 15.
Article in English | MEDLINE | ID: mdl-37080319

ABSTRACT

Environmental pollutants can accumulate in the human body through the food chain, which may seriously impact human health. Therefore, it is of vital importance to develop quick, simple, accurate and sensitive (respond quickly) technologies to evaluate the concentration of environmental pollutants in food. Quantum dots (QDs)-based fluorescence detection methods have great potential to overcome the shortcomings of traditional detection methods, such as long detection time, cumbersome detection procedures, and low sensitivity. This paper reviews the types and synthesis methods of QDs with a focus on green synthesis and the research progress on rapid detection of environmental pollutants (e.g., heavy metals, pesticides, and antibiotics) in food. Metal-based QDs, carbon-based QDs, and "top-down" and "bottom-up" synthesis methods are discussed in detail. In addition, research progress of QDs in detecting different environmental pollutants in food is discussed, especially, the practical application of these methods is analyzed. Finally, current challenges and future research directions of QDs-based detection technologies are critically discussed. Hydrothermal synthesis of carbon-based QDs with low toxicity from natural materials has a promising future. Research is needed on green synthesis of QDs, direct detection without pre-processing, and simultaneous detection of multiple contaminants. Finally, how to keep the mobile sensor stable, sensitive and easy to store is a hot topic in the future.


Subject(s)
Environmental Pollutants , Pesticides , Quantum Dots , Humans , Carbon , Technology , Environmental Pollutants/analysis
6.
J Environ Sci (China) ; 125: 112-134, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36375898

ABSTRACT

As the main contributor of the formation of particulate matter as well as ozone, volatile organic compounds (VOCs) greatly affect human health and the environmental quality. Catalytic combustion/oxidation has been viewed as an efficient, economically feasible and environmentally friendly way for the elimination of VOCs. Supported metal catalyst is the preferred type of catalysts applied for VOCs catalytic combustion because of the synergy between active components and support as well as its flexibility in the composition. The presence of support not only plays the role of keeping the catalyst with good stability and mechanical strength, but also provides a large specific surface for the good dispersion of active components, which could effectively improve the performance of catalyst as well as decrease the usage of active components, especially the noble metal amount. Mesoporous molecular sieves, owing to their large surface area, unique porous structures, large pore size as well as uniform pore-size distribution, were viewed as superior support for dispersing active components. This review focuses on the recent development of mesoporous molecular sieve supported metal catalysts and their application in catalytic oxidation of VOCs. The effect of active component types, support structure, preparation method, precursors, etc. on the valence state, dispersion as well as the loading of active species were also discussed and summarized. Moreover, the corresponding conversion route of VOCs was also addressed. This review aims to provide some enlightment for designing the supported metal catalysts with superior activity and stability for VOCs removal.


Subject(s)
Ozone , Volatile Organic Compounds , Humans , Volatile Organic Compounds/chemistry , Catalysis , Oxidation-Reduction , Particulate Matter , Metals
7.
Chemosphere ; 307(Pt 3): 136059, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35977569

ABSTRACT

The rapid reproduction of foodborne bacteria in food packaging threatens the health of consumers, the massive use and waste of packaging also causes serious environmental pollution. In this study, novel biodegradable antibacterial membranes based on silver-modified carboxymethyl chitosan (Ag-CMCS) were prepared. Polylactic acid (PLA) and polybutylene adipate-co-terephthalate (PBAT) were used as the base membrane materials. Characterization of the prepared membranes was performed by scanning electron microscopy (SEM), energy dispersive X-ray spectroscopy (EDS), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS), water contact angle, and so on. Especially, the silver on the surface of Ag-CMCS was proved to be metallic silver. For the first cycle of zone of inhibition test, the diameter of inhibition zone could reach up to 17 mm while the mass of silver released was negligible. The prepared antibacterial membranes could kill almost 100% of bacteria under certain conditions and inhibition zone still existed after more than 7 cycles of tests, indicating the prepared antibacterial membranes were effective. This study could provide new ideas for preparing efficient and environment-friendly antibacterial food packaging membranes.


Subject(s)
Chitosan , Metal Nanoparticles , Adipates , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Chitosan/chemistry , Chitosan/pharmacology , Metal Nanoparticles/chemistry , Polyesters , Polymers/pharmacology , Silver/chemistry , Silver/pharmacology , Water
8.
Sci Total Environ ; 851(Pt 1): 158161, 2022 Dec 10.
Article in English | MEDLINE | ID: mdl-35988597

ABSTRACT

Previous studies have indicated that heavy metal levels in milk vary partly depending on environmental metal concentrations. Given the increasing consumption of milk in China, it is essential to pay attention to milk safety. We performed a systematic review of relevant published studies to evaluate the heavy metal levels in milk and dairy products and the associated health risks, discuss environmental sources of heavy metals, and propose future research directions. A literature search was implemented in the Web of Science Core Collection and PubMed using multiple keywords such as "metal," "milk," "dairy products," and "China". A total of 16 published studies that analyzed metal levels in milk and dairy products in 20 provincial administrative regions were included. Most studies detected toxic heavy metals in milk and dairy products samples, including mercury, lead, cadmium, chromium, and arsenic. The lead concentration in milk from these studies did not exceed the Chinese standard for milk. However, three studies detected relatively high lead levels in both commercial and raw milk, exceeding the European Commission standard. The polluted environment surrounding the farm, feed, and packaging materials are likely sources of metals in milk and dairy products. The hazard index for the 11 analyzed metal elements in milk and dairy products was lower than 1, indicating negligible non-carcinogenic health risks from exposure to these metals. Children are at a higher risk than adults. This review illustrates that research in this field is limited to China. More research should be conducted in the future, such as evaluating the contribution of each environmental source of metal in milk and dairy products.


Subject(s)
Arsenic , Mercury , Metals, Heavy , Adult , Animals , Arsenic/analysis , Cadmium/analysis , Child , Chromium/analysis , Environmental Monitoring , Humans , Lead/analysis , Mercury/analysis , Metals, Heavy/analysis , Milk/chemistry , Risk Assessment
9.
Environ Res ; 210: 112986, 2022 07.
Article in English | MEDLINE | ID: mdl-35192806

ABSTRACT

Although there are some review papers on carbon capture, utilization and storage (CCUS), hardly any of these reviews are focused on the role of CO2 enhanced oil recovery (EOR) in accelerating carbon neutrality in China. In this review, strategies to achieve carbon neutrality is briefly but critically discussed, followed by a review of CO2-EOR as a promising technology. Especially, data analysis, including the number of publications on China's carbon neutrality, per capita CO2 emissions, China's power generation, and the crude oil production of China's large oilfields, is carried out to make the discussion more comprehensive. Given the large amount of coal consumed in China, the high percent of electricity generated with coal, and the slow penetration of renewables already observed, it seems unlikely that 2060 targets will be met without CCUS. In order to achieve carbon neutrality, both reduction in carbon emissions and increase in carbon sequestration are inevitable. Furthermore, it is concluded that CO2 storage through EOR is likely to have a bright future. However, there are some critical issues to be solved, including the technical issues, leakage and safety issues, cost issues, policy issues, etc. In order to turn CO2-EOR into a reliable and more favorable technology, more research and efforts are needed to solve these issues, including advancing carbon capture technologies, improving storage technologies, developing effective monitoring technologies, deploying government support and incentive policies, etc.


Subject(s)
Carbon Dioxide , Carbon , Carbon/analysis , Carbon Dioxide/analysis , Carbon Sequestration , China , Coal/analysis , Technology
10.
Chemosphere ; 295: 133963, 2022 May.
Article in English | MEDLINE | ID: mdl-35167836

ABSTRACT

Although ion exchange resins (IERs) have been extensively adopted in water treatment, there are no reports on the application thereof for synthesizing antibacterial materials against pathogenic bacteria. The present study is the first in which the ion exchange characteristic of IERs was utilized to introduce silver ions that possess efficient antibacterial properties. The resulting antibacterial materials were incorporated into polylactic acid (PLA) and/or polybutylene adipate terephthalate (PBAT) to prepare antibacterial membranes. XPS spectra revealed the occurrence of in-situ reduction of silver ions to metallic silver, which was preferable since the stability of silver in the materials was improved. EDS mapping analysis indicated that the distribution of silver was consistent with the distribution of sulfur in the membranes, verifying the ion exchange methodology proposed in the present study. To investigate the antibacterial performance of the prepared membranes, zone of inhibition tests and bacteria-killing tests were performed. The results revealed that neither bare polymeric membranes of PLA and PBAT nor IER-incorporated polymeric membranes exhibited noticeable antibacterial activities. In comparison, the antibacterial membranes demonstrated effective and sustainable antibacterial activities against pathogenic bacteria Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli). The prepared antibacterial membranes exhibited potential in food-related applications such as food packaging to delay food spoilage due to microbial growth.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/pharmacology , Escherichia coli , Ion Exchange Resins , Staphylococcus aureus
11.
Environ Sci Pollut Res Int ; 29(19): 28307-28316, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34993807

ABSTRACT

Enantioselectivity of chiral compounds is receiving growing concern. Lactofen, a chiral herbicide widely used in field crops and vegetables to control broadleaf weeds, is still sold as racemate. In this work, the herbicidal activity and metabolism behavior of lactofen were investigated on an enantiomeric level. Two common broadleaf weeds (Eclipta prostrata L. and Portulaca oleracea L.) were used to evaluate the herbicidal activity of rac-/R- and S-lactofen, and their metabolism behavior in loach and rat liver microsomes was explored. Higher herbicidal activity of S-lactofen was observed, with the 20d-EC50 values being 1.9-3.4 times lower than R-lactofen. Both loach and rat liver microsomes had ability to metabolize rac-lactofen, with half-lives of 1.93 and 1.28 h, respectively. Enantioselective metabolism behaviors were observed in loach and rat liver microsomes and the direction of enantioselectivity were different. R-lactofen was preferentially metabolized in loach liver microsome, while S-lactofen was preferentially metabolized in rat liver microsome. No interconversion of R- and S-lactofen was found. Besides, the main metabolic pathways of R- and S-lactofen were found to be significantly different. R-lactofen was metabolized to R-desethyl lactofen in both loach and rat liver microsomes without further metabolism. However, S-lactofen was metabolized to both S-desethyl lactofen and acifluorfene in rat liver microsome, which was mainly metabolized to acifluorfene in loach liver microsome. This study indicated enantioselectivity and metabolites should be taken into consideration when overall evaluating the environmental behavior of lactofen.


Subject(s)
Herbicides , Animals , Halogenated Diphenyl Ethers/metabolism , Microsomes, Liver/metabolism , Rats , Stereoisomerism
12.
Environ Sci Process Impacts ; 24(2): 221-232, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35072673

ABSTRACT

The denitrification process plays an important role in improving water quality and is a source/sink of nitrous oxide to the atmosphere. The second important rate-limiting step of the denitrification process is catalyzed by two enzymes with different structures and unrelated evolutionary relationships, namely, the Cu-type nitrite reductase encoded by the nirK gene and the cytochrome cd1-type nitrite reductase encoded by the nirS gene. Although some relevant reviews have been published on denitrifiers, most of these reviews do not include statistical analysis, and do not compare the nirS and nirK communities in-depth. However, a systematic study of the nirS-type and nirK-type denitrifying communities and their response to environmental factors in different ecosystems is needed. In this review, a scientometric approach combined with case studies was used to study the nirS-type and nirK-type denitrifiers. The scientometric approach demonstrated that Pseudomonas, Paracoccus, and Thauera are the most frequently mentioned nirS-type denitrifiers, while Pseudomonas and Bradyrhizobium are the top two most frequently mentioned nirK-type denitrifiers. Among various environmental factors, the concentrations of nitrite, nitrate and carbon sources were widely reported factors that can influence the abundance and structure of nirS-type and nirK-type denitrifying communities. Case studies indicated that Bradyrhizobium was the major genus detected by high-throughput sequencing in both nirS and nirK-type denitrifiers in soil systems. nirS-type denitrifiers are more sensitive to the soil type, soil moisture, pH, and rhizosphere effect than nirK. To clarify the relationships between denitrifying communities and environmental factors, the DNA stable isotope probe combined with metagenomic sequencing is needed for new denitrifier detections.


Subject(s)
Denitrification , Soil Microbiology , Denitrification/genetics , Ecosystem , Nitrous Oxide/analysis , Soil/chemistry
13.
Chemosphere ; 291(Pt 3): 133106, 2022 Mar.
Article in English | MEDLINE | ID: mdl-34848235

ABSTRACT

In order to reduce foodborne diseases caused by bacterial infections, antibacterial membranes have received increasing research interests in recent years. In this study, highly effective antibacterial membranes were prepared using biodegradable polymers, including polylactic acid (PLA), polybutylene adipate terephthalate (PBAT), and carboxymethyl cellulose (CMC). The cation exchange property of CMC was utilized to introduce silver to prepare antibacterial materials. The presence of silver in the membranes was confirmed by EDS mapping, and the reduction of silver ions to metallic silver was confirmed by the Ag3d XPS spectrum which displayed peaks at 374.46 eV and 368.45 eV, revealing that the oxidation state of silver changed to zero. Two common pathogenic bacteria, Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli), were used to investigate the antibacterial performance of the prepared membranes. Zone of inhibition and bacteria-killing tests revealed that the antibacterial membranes were efficient in inhibiting the growth of bacteria (diameters of inhibition zone ranged from 16 mm to 19 mm for fresh membranes) and capable of killing 100% of bacteria under suitable conditions. Furthermore, after 6 cycles of continuous zone of inhibition tests, the membranes still showed noticeable antibacterial activities, which disclosed the sustainable antibacterial properties of the membranes.


Subject(s)
Metal Nanoparticles , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Escherichia coli , Microbial Sensitivity Tests , Polymers
14.
Rev Environ Health ; 37(1): 13-27, 2022 Mar 28.
Article in English | MEDLINE | ID: mdl-33975416

ABSTRACT

Microbial fuel cells (MFCs) are eco-friendly and useful bioelectrical devices that harness the natural metabolisms of microbes to produce electrical power directly from organic materials. In this study, a bibliometric analysis is conducted to evaluate MFC research from 2001 to 2018 on the basis of the Science Citation Index Expanded database. Overall, MFC research has experienced a dramatic increase over last 18 years, with an exponential growth in the accumulated number of publications. Most publications are closely related to the industrialization and commoditization of MFCs, along with environmental issues, which are currently the biggest global challenges in MFC studies. A small proportion (4.34%) of the scientific journals published more than half (54.34%) of the total articles in the MFC field. Articles from the top 10 countries/regions accounted for the majority (83.16%) of the total articles, clearly indicating that advanced MFC technologies are currently dominated by these countries/regions. Moreover, an increasing number of MFC researchers are considering two-chamber and three-chamber MFC reactions. In particular, they are focusing on environmental technology instead of merely improving the efficiency of electricity generation. Materials research in the MFC field is still a popular area worldwide, and many researchers have focused on novel and eco-friendly cathode and anode developments. Meanwhile, only a few MFC studies are concerned with biological research.


Subject(s)
Bioelectric Energy Sources , Bibliometrics , Electricity , Electrodes
15.
Chemosphere ; 287(Pt 2): 132131, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34492413

ABSTRACT

Ion exchange membranes (IEMs) are widely used in water treatment applications such as electrodialysis. However, the exploration of IEMs as effective antibacterial food contact materials (e.g., food packaging membranes) against pathogenic bacteria to ensure food safety has not been reported. Here, we report a simple but effective method to prepare high performance antibacterial membranes via ion exchange coupled with in-situ reduction. The general membrane properties are characterized using SEM, EDS, FTIR, XPS, XRD, DSC, TGA, water uptake, etc. The distribution of silver and copper in the membranes are generally in line with the distribution of sulfur, indicating that the antibacterial ions are introduced into the membranes via ion exchange and are bonded with the sulfonate groups in the membranes. The antibacterial performance is investigated using zone of inhibition tests and continuous bacteria growth inhibition tests. All of the prepared membranes show obvious antibacterial activities compared to the bare cation exchange membranes. The diameters of inhibition zone against Staphylococcus aureus (S. aureus) are all larger than those of Escherichia coli (E. coli), indicating that the prepared membranes are more efficient in inhibiting S. aureus compared to E. coli. Furthermore, the silver-based membrane shows more sustainable antibacterial activities compared to the copper-based membrane. Especially, the results clearly reveal that the silver-based membrane is capable of killing bacteria instead of just inhibiting the growth of bacteria. We have shown for the first time that membranes derived from IEMs have the potential as food contact materials to inhibit the growth of pathogenic bacteria so as to eliminate the risk of bacterial infections and meanwhile delay food spoilage due to bacteria growth.


Subject(s)
Metal Nanoparticles , Silver , Anti-Bacterial Agents/pharmacology , Copper , Escherichia coli , Ion Exchange , Microbial Sensitivity Tests , Silver/pharmacology , Staphylococcus aureus
16.
Environ Sci Pollut Res Int ; 28(39): 54497-54510, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34431053

ABSTRACT

Increasing crop yields and ensuring food security is a major global challenge. In order to increase crop production, chemical fertilizers and pesticides are excessively used. However, the significance of root exudates is understudied. Beneficial interactions between plant and rhizosphere microbiome are critical for plant fitness and health. In this review, we discuss the application and progress of current research methods and technologies in terms of root exudates and rhizosphere microbiome. We summarize how root exudates promote plant access to nitrogen, phosphorus, and iron, and how root exudates strengthen plant immunity to cope with biotic stress by regulating the rhizosphere microbiome, and thereby reducing dependence on fertilizers and pesticides. Optimizing these interactions to increase plant nutrient uptake and resistance to biotic stresses offers one of the few untapped opportunities to confront sustainability issues in food security. To overcome the limitations of current research, combination of multi-omics, imaging technology together with synthetic communities has the potential to uncover the interaction mechanisms and to fill the knowledge gap for their applications in agriculture to achieve sustainable development.


Subject(s)
Microbiota , Rhizosphere , Crop Production , Exudates and Transudates
17.
Environ Sci Pollut Res Int ; 28(39): 54511-54530, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34431060

ABSTRACT

Environment protection and food safety are two critical issues in the world. In this review, a novel approach which integrates statistical study and subjective discussion was adopted to review recent advances on environment and food safety. Firstly, a scientometric-based statistical study was conducted based on 4904 publications collected from the Web of Science Core Collection database. It was found that the research on environment and food safety was growing steadily from 2001 to 2020. Interestingly, the statistical analysis of most-cited papers, titles, abstracts, keywords, and research areas revealed that the research on environment and food safety was diverse and multidisciplinary. In addition to the scientometric study, strategies to protect environment and ensure food safety were critically discussed, followed by a discussion on the emerging research topics, including emerging contaminates (e.g., microplastics), rapid detection of contaminants (e.g., biosensors), and environment friendly food packaging materials (e.g., biodegradable polymers). Finally, current challenges and future research directions were proposed.


Subject(s)
Environmental Pollution , Food Safety , Plastics , Environmental Monitoring
18.
Chemosphere ; 282: 130817, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34091294

ABSTRACT

Ion exchange membranes (IEMs) are undergoing prosperous development in recent years. More than 30,000 papers which are indexed by Science Citation Index Expanded (SCIE) have been published on IEMs during the past twenty years (2001-2020). Especially, more than 3000 papers are published in the year of 2020, revealing researchers' great interest in this area. This paper firstly reviews the different types (e.g., cation exchange membrane, anion exchange membrane, proton exchange membrane, bipolar membrane) and electrochemical properties (e.g., permselectivity, electrical resistance/ionic conductivity) of IEMs and the corresponding working principles, followed by membrane synthesis methods, including the common solution casting method. Especially, as a promising future direction, green synthesis is critically discussed. IEMs are extensively applied in various applications, which can be generalized into two big categories, where the water-based category mainly includes electrodialysis, diffusion dialysis and membrane capacitive deionization, while the energy-based category mainly includes reverse electrodialysis, fuel cells, redox flow battery and electrolysis for hydrogen production. These applications are comprehensively discussed in this paper. This review may open new possibilities for the future development of IEMs.


Subject(s)
Membranes, Artificial , Renal Dialysis , Cations , Ion Exchange , Water
19.
RSC Adv ; 8(42): 24036-24048, 2018 Jun 27.
Article in English | MEDLINE | ID: mdl-35540300

ABSTRACT

A comprehensive scientometric approach was adopted to study the research on ion exchange membranes. The statistical analysis was conducted based on 21 123 publications which were related to the topic of ion exchange membranes. Specifically, from 2001 to 2016, over 18 000 articles were published on ion exchange membranes, indicating researchers' great interest in this topic. Especially, compared to 2001, the number of articles published in 2016 increased approximately six-fold. This trend continued in 2017 since over 2000 articles were published in the year of 2017. Also, these articles were spread across over 1000 different journals, near 100 countries/regions and over 5000 research institutes, revealing the importance of ion exchange membrane as well as the broad research interest in this field. Besides, the properties and applications of ion exchange membranes were also discussed statistically. Furthermore, keywords analysis indicated that fuel cell and proton exchange membrane had the highest cooccurrence frequency. Finally, research areas analysis revealed that ion exchange membranes had a close relation with chemistry, energy and materials.

20.
RSC Adv ; 8(50): 28700-28709, 2018 Aug 07.
Article in English | MEDLINE | ID: mdl-35548397

ABSTRACT

A comprehensive statistical study related to biochar was conducted by using the scientometric method. The publications are mainly in the form of articles (over 16 000), accounting for 87.7% of the total, which demonstrates that researchers have great interest in this research field. Among these articles, 96.8% were written and published in English and came from 2655 different journals. The rate of increase in the annual number of publications was rapid from 2010 to 2017, and it was predicted that the cumulative number of articles concerning biochar will exceed 20 000 by the year 2020. At least one article from 154 countries or regions has been published, and every continent except Antarctica has had articles published over the past 20 years period. The percentage of collaborative articles was 71.9% and the collaboration between the USA and China has been the most fruitful. In addition, the Chinese Academy of Sciences is the research institute with the most publications. Furthermore, over 60% of the articles were published as a result of the cooperation and connection between the Chinese Academy of Sciences and the University of Chinese Academy of Sciences. The article published in Nature had the highest citation numbers, while Environmental Science & Technology had the most articles (4) that were selected as the top 20 for the most-cited articles. The agriculture research category had the highest average citations among the top four categories (i.e., environmental sciences and ecology, agriculture, chemistry and engineering).

SELECTION OF CITATIONS
SEARCH DETAIL
...