Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Sci ; 10(21): 5444-5451, 2019 Jun 07.
Article in English | MEDLINE | ID: mdl-31293726

ABSTRACT

Chemiluminescence (CL) functionalized materials have found tremendous value in developing CL assays for clinical assays and point-of-care tests. To date, the design and optimization of these materials have mainly relied on conventional trial-and-error procedures in which the ensemble performance is evaluated using conditional experiments. Here we have built an optical microscope to acquire the CL emission from single magnetic-polymer hybrid microbeads functionalized with luminol analogues, and to access the CL kinetics of each individual particle. It was incidentally found that a minor subpopulation of microbeads exhibited intense and delayed CL emission while the majority showed transient and weak emission. Structural characterization of the very same individual particles uncovered that the amorphous multi-core microstructures were responsible for the enhanced encapsulation efficiency and optimized CL reaction kinetics. Guided by this knowledge stemming from single particle CL imaging, the synthesis procedure was rationally optimized to enrich the portion of microbeads with better CL performance, which was validated by both single particle imaging and the significantly improved analytical performance at the ensemble level. The present work not only demonstrates the CL imaging and CL kinetics curve of single microbeads for the first time, but also sets a clear example showing the capability of single particle studies to investigate the structure-activity relationship in a bottom-up manner and to help the rational design of ensemble materials with improved performance.

2.
Front Hum Neurosci ; 13: 152, 2019.
Article in English | MEDLINE | ID: mdl-31156411

ABSTRACT

Neuromuscular electrical stimulation (NMES) is frequently used in rehabilitation therapy to improve motor recovery. To optimize the stimulatory effect of NMES, the parameters of NMES, including stimulation mode, location, current intensity, and duration, among others have been investigated; however, these studies mainly focused on the effects of changing parameters in the current plateau stage of the NMES cycle, while the impacts on other stages, such as the current rising stage, have yet to be investigated. In this article, we studied the electroencephalograph (EEG) effects during NMES, with different rates of current change in the rising stage, and stable current intensity in the plateau stage. EEG signals (64-channel) were collected from 28 healthy subjects, who were administered with high, medium, or low current change rate (CCR) NMES through a right-hand wrist extensor. Time-frequency analysis and brain source analysis, using the LORETA method, were used to investigate neural activity in sensorimotor cortical areas. The strengths of cortical activity induced by different CCR conditions were compared. NMES with a high CCR activated the sensorimotor cortex, despite the NMES current intensity in the plateau stage lower than the motor threshold. Reduction of the Alpha 2 band (10-13 Hz) event related spectral power (ERSP) during NMES stimulation was significantly enhanced by increasing CCR (p < 0.05). LORETA-based source analysis demonstrated that, in addition to typical sensory areas, such as primary somatosensory cortex (S1), sensorimotor areas including primary motor cortex (M1), premotor cortex (PMC), and somatosensory association cortex (SAC) were all activated by within threshold NMES. Furthermore, compared with the low CCR condition, cortical activity was significantly enhanced in the S1, M1, and PMC areas under high CCR conditions. This study shows CCR in the NMES rising stage can affect EEG responses in the sensorimotor cortex and suggests that CCR is an important parameter applicable to the optimization of NMES treatment.

3.
Sensors (Basel) ; 19(24)2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31888176

ABSTRACT

In the human-robot hybrid system, due to the error recognition of the pattern recognition system, the robot may perform erroneous motor execution, which may lead to falling-risk. While, the human can clearly detect the existence of errors, which is manifested in the central nervous activity characteristics. To date, the majority of studies on falling-risk detection have focused primarily on computer vision and physical signals. There are no reports of falling-risk detection methods based on neural activity. In this study, we propose a novel method to monitor multi erroneous motion events using electroencephalogram (EEG) features. There were 15 subjects who participated in this study, who kept standing with an upper limb supported posture and received an unpredictable postural perturbation. EEG signal analysis revealed a high negative peak with a maximum averaged amplitude of -14.75 ± 5.99 µV, occurring at 62 ms after postural perturbation. The xDAWN algorithm was used to reduce the high-dimension of EEG signal features. And, Bayesian linear discriminant analysis (BLDA) was used to train a classifier. The detection rate of the falling-risk onset is 98.67%. And the detection latency is 334ms, when we set detection rate beyond 90% as the standard of dangerous event onset. Further analysis showed that the falling-risk detection method based on postural perturbation evoked potential features has a good generalization ability. The model based on typical event data achieved 94.2% detection rate for unlearned atypical perturbation events. This study demonstrated the feasibility of using neural response to detect dangerous fall events.

4.
Biomed Eng Online ; 17(1): 127, 2018 Sep 21.
Article in English | MEDLINE | ID: mdl-30241535

ABSTRACT

BACKGROUND AND PURPOSE: Turning while walking has a frequent occurrence in daily life. Evaluation of its dynamic stability will facilitate fall prevention and rehabilitation scheme. This knowledge is so limited that we set it as the first aim of this study. Another aim was to investigate spatiotemporal parameters during turning. METHODS: Fifteen healthy young adults were instructed to perform straight walking, 45° step turn to the left and 45° spin turn to the right at natural speed. Dynamic stability was measured by margin of stability (MoS) in anterior, posterior, left and right direction at each data point where significant differences were detected using 95% bootstrap confidence band. Common spatiotemporal parameters were computed in each condition subdivided into approach, turn and depart phases. RESULTS: Results showed that minimum anterior MoS appeared at middle of swing while minimum lateral MoS at contralateral heel strike in all conditions. Posterior MoS decreased before middle of turn phase in spin whereas after middle of turn phase in step. Lateral MoS and stride width declined in turn phase of spin while in depart of step. Spin had a long step and stride length. Long swing phases were observed in turns. CONCLUSIONS: These data help explain that people are most likely to fall forward at middle of swing and to fall toward the back and the support side at heel strike. Our findings demonstrate that instability mainly exist in turn phase of spin and depart phase of step turn.


Subject(s)
Healthy Volunteers , Postural Balance , Walking/physiology , Biomechanical Phenomena , Female , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...