Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Cell Transplant ; 32: 9636897231196493, 2023.
Article in English | MEDLINE | ID: mdl-37688441

ABSTRACT

Adipose-derived stem cells (ADSCs) are employed as a promising alternative in treating cartilage injury. Regulating the inflammatory "fingerprint" of ADSCs to improve their anti-inflammatory properties could enhance therapy efficiency. Herein, a novel injectable decorin/gellan gum hydrogel combined with ADSCs encapsulation for arthritis cartilage treatment is proposed. Decorin/gellan gum hydrogel was prepared according to the previous manufacturing protocol. The liquid-solid form transition of gellan gum hydrogel is perfectly suitable for intra-articular injection. Decorin-enriched matrix showing an immunomodulatory ability to enhance ADSCs anti-inflammatory phenotype under inflammation microenvironment by regulating autophagy signaling. This decorin/gellan gum/ADSCs hydrogel efficiently reverses interleukin-1ß-induced cellular injury in chondrocytes. Through a mono-iodoacetate-induced arthritis mice model, the synergistic therapeutic effect of this ADSCs-loaded hydrogel, including inflammation attenuation and cartilage protection, is demonstrated. These results make the decorin/gellan gum hydrogel laden with ADSCs an ideal candidate for treating inflammatory joint disorders.


Subject(s)
Arthritis , Hydrogels , Mice , Animals , Hydrogels/pharmacology , Decorin/pharmacology , Cartilage , Injections, Intra-Articular , Stem Cells , Inflammation/therapy , Autophagy
2.
Int J Biol Macromol ; 245: 125522, 2023 Aug 01.
Article in English | MEDLINE | ID: mdl-37353124

ABSTRACT

Biodegradable subacromial spacer implantation has become practicable for the treatment of irreparable rotator cuff tears (IRCT). However, the relative high degradation rate and inferior tissue regeneration properties of current subacromial spacer may lead to failure regards to long-term survival. It is reported that satisfactory clinical results lie in the surrounding extracellular matrix (ECM) deposition after implantation. This study aims to develop a biological subacromial spacer that would enhance tissue regeneration properties and results in better ECM deposition. Physicochemical properties were characterized on both poly-l-lactide-co-ε-caprolactone (PLCL) dip-coating spacer (monolayer spacer, MS) and PLCL dip-coating + Poly-l-Lactic Acid (PLLA)/Gelatin electrospun spacer (Bilayer Spacer, BS). Cytocompatibility, angiogenesis, and collagen inducibility were evaluated with tendon fibroblasts and endothelial cells. Ultrasonography and histomorphology were used to analyze biodegradability and surrounding ECM deposition after the implantation in vivo. BS was successfully fabricated with the dip-coating and electrospinning technique, based on the human humeral head data. In vitro studies demonstrated that BS showed a greater cytocompatibility, and increased secretion of ECM proteins comparing to MS. In vivo studies indicated that BS promoted ECM deposition and angiogenesis in the surrounding tissue. Our research highlights that BS exhibits better ECM deposition and reveals a potential candidate for the treatment of IRCT in future.


Subject(s)
Rotator Cuff Injuries , Humans , Rotator Cuff Injuries/drug therapy , Gelatin , Endothelial Cells , Extracellular Matrix
3.
Anim Biotechnol ; 34(4): 986-993, 2023 Nov.
Article in English | MEDLINE | ID: mdl-34865600

ABSTRACT

The DNA copy number variations (CNVs) are widely involved in affecting various kinds of biological functions, such as environmental adaptation. Tibetan sheep and White Suffolk sheep are two representative indigenous and exotic breeds raised in Sichuan, China, and both of them have many contrasting biological characteristics. In this study, we employed high-throughput sequencing approach to investigate genome-wide CNVs between the two sheep breeds. A total of 11,135 CNV regions (CNVRs) consisting of 6,488 deletions and 4,647 duplications were detected, whose length ranged from 1,599 bp to 0.56 Mb with the mean of 4,658 bp. There were 281 CNVRs segregated between Tibetan sheep and White Suffolk sheep, and 18 of them have been fixed within both breeds. Functional analyses of candidate genes within the segregating CNVRs revealed the thyroid hormone signaling pathway and CTNNB1 gene that would be responsible for differential biological characteristics of breeds, such as energy metabolism, seasonal reproduction, and litter size. Furthermore, the segregating CNVRs identified in this study were overlapped with many known quantitative trait loci that are associated with growth, testis weight, and reproductive seasonality. In conclusion, these results help us better understanding differential biological characteristics between Tibetan sheep and White Suffolk sheep.


Subject(s)
DNA Copy Number Variations , Quantitative Trait Loci , Male , Animals , Sheep/genetics , DNA Copy Number Variations/genetics , Tibet , China , Signal Transduction
4.
J Pers Med ; 12(11)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36579520

ABSTRACT

Accurate measurement of the minimum distance between bony structures of the humeral head and the acromion or coracoid helps advance a better understanding of the shoulder anatomical features. Our goal was to precisely determine the minimum acromiohumeral distance (AHD), coracohumeral distance (CHD), and glenohumeral distance (GHD) in a sample of the Chinese population as an in vivo anatomical analysis. We retrospectively included 146 patients who underwent supine computed tomography (CT) examination of the shoulder joint. The minimum AHD, CHD, and GHD values were quantitatively measured using three-dimensional (3D) CT reconstruction techniques. The correlation between minimum AHD, CHD, and GHD value and age with different sexes was evaluated using Pearson Correlation Coefficient. The mean value of minimum AHD in males was greater than that in females (male 7.62 ± 0.98 mm versus female 7.27 ± 0.86 mm, p = 0.046). The CHD among different sexes differed significantly (male 10.75 ± 2.40 mm versus female 8.76 ± 1.38 mm, p < 0.001). However, we found no statistical differences in GHD with different sexes (male 2.00 ± 0.31 mm versus female 1.96 ± 0.36 mm, p > 0.05). In terms of age correlation, a negative curve correlation existed between age and AHD among the different sexes (male R2 = 0.124, p = 0.030, female R2 = 0.112, p = 0.005). A negative linear correlation was found in CHD among the different sexes (male R2 = 0.164, p < 0.001, female R2 = 0.122, p = 0.005). There were no differences between age and minimum GHD in both sexes. The 3D CT reconstruction model can accurately measure the minimum AHD, CHD, and GHD value in vivo and is worthy of further investigation for standard clinical anatomical assessment. Aging may correlate with AHD and CHD narrowing for both sexes.

5.
Nutrients ; 14(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35956315

ABSTRACT

Diabetic kidney disease (DKD) is an emerging pandemic, paralleling the worldwide increase in obesity and diabetes mellitus. DKD is now the most frequent cause of end-stage renal disease and is associated with an excessive risk of cardiovascular morbidity and mortality. DKD is a consequence of systemic endothelial dysfunction. The endothelial-dependent cytoprotective coagulation protease activated protein C (aPC) ameliorates glomerular damage in DKD, in part by reducing mitochondrial ROS generation in glomerular cells. Whether aPC reduces mitochondrial ROS generation in the tubular compartment remains unknown. Here, we conducted expression profiling of kidneys in diabetic mice (wild-type and mice with increased plasma levels of aPC, APChigh mice). The top induced pathways were related to metabolism and in particular to oxidoreductase activity. In tubular cells, aPC maintained the expression of genes related to the electron transport chain, PGC1-α expression, and mitochondrial mass. These effects were associated with reduced mitochondrial ROS generation. Likewise, NLRP3 inflammasome activation and sterile inflammation, which are known to be linked to excess ROS generation in DKD, were reduced in diabetic APChigh mice. Thus, aPC reduces mitochondrial ROS generation in tubular cells and dampens the associated renal sterile inflammation. These studies support approaches harnessing the cytoprotective effects of aPC in DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/metabolism , Diabetic Nephropathies/etiology , Inflammation/complications , Kidney/metabolism , Mice , Protein C , Reactive Oxygen Species/metabolism
6.
Nutrients ; 14(15)2022 Jul 26.
Article in English | MEDLINE | ID: mdl-35893913

ABSTRACT

It is controversial whether lifestyle-induced weight loss (LIWL) intervention provides long-term benefit. Here, we investigated whether the degree of weight loss (WL) in a controlled LIWL intervention study determined the risk of prediabetes and recurrence of metabolic syndrome (MetS) during a 5-year follow-up. Following LIWL, 58 male participants (age 45−55 years) were divided into four quartiles based on initial WL: Q1 (WL 0−8.1%, n = 15), Q2 (WL 8.1−12.8%, n = 14), Q3 (WL 12.8−16.0%, n = 14), and Q4 (WL 16.0−27.5%, n = 15). We analyzed changes in BMI, HDL cholesterol, triglycerides (TGs), blood pressure, and fasting plasma glucose (FPG) at annual follow-up visits. With a weight gain after LIWL between 1.2 (Q2) and 2.5 kg/year (Q4), the reduction in BMI was maintained for 4 (Q2, p = 0.03) or 5 (Q3, p = 0.03; Q4, p < 0.01) years, respectively, and an increase in FPG levels above baseline values was prevented in Q2−Q4. Accordingly, there was no increase in prediabetes incidence after LIWL in participants in Q2 (up to 2 years), Q3 and Q4 (up to 5 years). A sustained reduction in MetS was maintained in Q4 during the 5-year follow-up. The present data indicate that a greater initial LIWL reduces the risk of prediabetes and recurrence of MetS for up to 5 years.


Subject(s)
Metabolic Syndrome , Prediabetic State , Follow-Up Studies , Humans , Life Style , Male , Metabolic Syndrome/epidemiology , Middle Aged , Prediabetic State/epidemiology , Weight Loss/physiology
7.
Macromol Biosci ; 22(1): e2100281, 2022 01.
Article in English | MEDLINE | ID: mdl-34708919

ABSTRACT

Failing to regenerate native tendon tissue in chronic massive rotator cuff tears (CMRCTs) results in high retear rates after surgery. Gelatin is a hydrolyzed form of collagen which is bioactive and biocompatible. This study intends to investigate the suitability of integrating gelatin to poly (l-lactic acid) (PLLA) fibrous membranes for promoting the healing of CMRCTs. PLLA/Gelatin electrospun membranes (PGEM) are fabricated using electrospinning technology. The fourier transform infrared, static contact angles are tested sequentially. Cytocompatibility is evaluated with rat tendon fibroblasts and human umbilical endothelial cells (HUEVCs) lines. CMRCTs rat models are established and assigned into three groups (the sham group, the repaired group, and the augmentation group) to perform histomorphological and biomechanical evaluations. Gelatin is successfully integrated into PLLA fibrous membranes by the electrospinning technique. In vitro studies indicate that PGEM shows a great cytocompatibility for rat tendon fibroblasts and HUEVCs. In vivo studies find that applications of PGEM significantly promote well-aligned collagen I fibers formation and enhance biomechanical properties of the repaired tendon in CMRCTs rat models. In summary, gelatin promotes tendon fibroblasts and HUEVCs adhesion, migration, and proliferation on the PLLA fibrous membranes, and PGEM may provide a great prospect for clinical application.


Subject(s)
Rotator Cuff Injuries , Animals , Endothelial Cells , Gelatin/pharmacology , Rats , Regeneration , Rotator Cuff Injuries/surgery , Wound Healing
8.
PLoS One ; 16(9): e0257974, 2021.
Article in English | MEDLINE | ID: mdl-34582500

ABSTRACT

Sichuan, China, has abundant genetic resources of sheep (Ovis aries). However, their genetic diversity and population structure have been less studied, especially at the genome-wide level. In the present study, we employed the specific-locus amplified fragment sequencing for identifying genome-wide single nucleotide polymorphisms (SNPs) among five breeds of sheep distributed in Sichuan, including three local pure breeds, one composite breed, and one exotic breed of White Suffolk. From 494 million clean paired-end reads, we obtained a total of 327,845 high-quality SNPs that were evenly distributed among all 27 chromosomes, with a transition/transversion ratio of 2.56. Based on this SNP panel, we found that the overall nucleotide diversity was 0.2284 for all five breeds, with the highest and lowest diversity observed in Mage sheep (0.2125) and Butuo Black (0.1963) sheep, respectively. Both Wright's fixation index and Identity-by-State distance revealed that all individuals of Liangshan Semifine-wool, White Suffolk, and Butuo Black sheep were respectively clustered together, and the breeds could be separated from each other, whereas Jialuo and Mage sheep had the closest genetic relationship and could not be distinguished from each other. In conclusion, we provide a reference panel of genome-wide and high-quality SNPs in five sheep breeds in Sichuan, by which their genetic diversity and population structures were investigated.


Subject(s)
Genetic Variation/genetics , Sheep, Domestic/genetics , Sheep/genetics , Animals , China , Chromosomes, Mammalian/genetics , Female , Gene Frequency/genetics , Heterozygote , Male , Polymorphism, Single Nucleotide/genetics , Species Specificity
9.
Regen Biomater ; 8(3): rbab014, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33936750

ABSTRACT

Severe burns are challenging to heal and result in significant death throughout the world. Adipose-derived mesenchymal stem cells (ADSCs) have emerged as a promising treatment for full-thickness burn healing but are impeded by their low viability and efficiency after grafting in vivo. Nitric oxide (NO) is beneficial in promoting stem cell bioactivity, but whether it can function effectively in vivo is still largely unknown. In this study, we bioprinted an efficient biological scaffold loaded with ADSCs and NO (3D-ADSCs/NO) to evaluate its biological efficacy in promoting severe burn wound healing. The integral 3D-ADSCs/NO hydrogel scaffolds were constructed via 3D bioprinting. Our results shown that 3D-ADSCs/NO can enhance the migration and angiogenesis of Human Umbilical Vein Endothelial Cells (HUVECs). Burn wound healing experiments in mice revealed that 3D-ADSCs/NO accelerated the wound healing by promoting faster epithelialization and collagen deposition. Notably, immunohistochemistry of CD31 suggested an increase in neovascularization, supported by the upregulation of vascular endothelial growth factor (VEGF) mRNA in ADSCs in the 3D biosystem. These findings indicated that 3D-ADSC/NO hydrogel scaffold can promote severe burn wound healing through increased neovascularization via the VEGF signalling pathway. This scaffold may be considered a promising strategy for healing severe burns.

10.
Cell Signal ; 85: 110048, 2021 09.
Article in English | MEDLINE | ID: mdl-34015470

ABSTRACT

Integrated stress response (ISR) contributes to various neuropathological processes and acting as a therapy target in CNS injuries. However, the fundamental role of ISR in regulating microglial polarization remains largely unknown. Currently no proper pharmacological approaches to reverse microglia-driven neuroinflammation in surgical brain injury (SBI) have been reported. Here we found that inhibition of the crucial ISR effector, activating transcription factor 4 (ATF4), using the RNA interference suppressed the lipopolysaccharide (LPS)-stimulated microglial M1 polarization in vitro. Interestingly, counteracting ISR with a small-molecule ISR inhibitor (ISRIB) resulted in a significant microglial M1 towards M2 phenotype switching after LPS treatment. The potential underlying mechanisms may related to downregulate the intracellular NADPH oxidase 4 (NOX4) expression under the neuroinflammatory microenvironment. Notably, ISRIB ameliorated the infiltration of microglia and improved the neurobehavioral outcomes in the SBI rat model. Overall, our findings suggest that targeting ISR exerts a novel anti-inflammatory effect on microglia via regulating M1/M2 phenotype and may represent a potential therapeutic target to overcome neuroinflammation following SBI.


Subject(s)
Brain Injuries , Microglia , Animals , Brain Injuries/drug therapy , Brain Injuries/metabolism , Cell Polarity , Mice , Mice, Inbred C57BL , Neuroinflammatory Diseases , Rats , Signal Transduction
11.
FEBS Open Bio ; 10(11): 2478-2488, 2020 11.
Article in English | MEDLINE | ID: mdl-32910552

ABSTRACT

Joint contracture (also known as arthrofibrosis) is a fibrotic joint disorder characterized by excessive collagen production to form fibrotic scar tissue and adhesions within joint capsules. This can severely affect day-to-day activities and quality of life because of a restricted range of motion in affected joints. The precise pathogenic mechanism underlying joint contractures is not fully understood. Lumican belongs to the class II small leucine-rich repeat proteoglycan superfamily, which makes up collagen fibrils in the extracellular matrix. Lumican is ubiquitously expressed in the skin, liver, heart, uterus and articular cartilage and has reported roles in cell migration, proliferation, angiogenesis and Toll-like receptor 4 signaling. Previous research has suggested that lumican is involved in the pathogenesis of several fibrotic diseases. Because joint contracture resembles a fibrotic disease, we aimed to investigate the role of lumican in the development of joint contracture in vitro. Here, we showed that protein levels were up-regulated in the fibrotic joint capsule versus control. We observed that lumican significantly enhanced the proliferation, migration and fibroblast-myofibroblast transition of synovial fibroblasts. Moreover, lumican led to increased transcription of alpha-smooth muscle actin, matrix metallopeptidase 9, Collagen I, plasminogen activator inhibitor 1 and transforming growth factor-ß in vitro. Lumican treatment promoted collagen lattice contraction in a dose-dependent manner as early as 24 h after treatment. Thus, our studies reveal that lumican could promote fibroblast-myofibroblast transition and joint contracture.


Subject(s)
Joints/pathology , Lumican/metabolism , Signal Transduction , Transforming Growth Factor beta/metabolism , Actins/genetics , Actins/metabolism , Cell Movement , Cell Proliferation , Collagen/metabolism , Female , Fibrosis , Humans , Joint Capsule/metabolism , Joint Capsule/pathology , Male , Matrix Metalloproteinase 9/metabolism , Middle Aged , Myofibroblasts/metabolism , Myofibroblasts/pathology , Plasminogen Activator Inhibitor 1/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Synovial Membrane/pathology , Up-Regulation
12.
J Cell Biochem ; 121(7): 3479-3490, 2020 07.
Article in English | MEDLINE | ID: mdl-31898371

ABSTRACT

Osteosarcoma (OS) is the most common primary solid malignant bone tumor, and its metastasis is a prominent cause of high mortality in patients. In this study, a prognosis risk signature was constructed based on metastasis-associated genes. Four microarrays datasets with clinical information were downloaded from Gene Expression Omnibus, and 256 metastasis-associated genes were identified by limma package. Further, a protein-protein interaction network was constructed, and survival analysis was performed using data from the Therapeutically Applicable Research to Generate Effective Treatments data matrix, identifying 19 genes correlated with prognosis. Six genes were selected by the least absolute shrinkage and selection operator regression for multivariate cox analysis. Finally, a three-gene (MYC, CPE, and LY86) risk signature was constructed, and datasets GSE21257 and GSE16091 were used to validate the prediction efficiency of the signature. The survival times of low- and high-risk groups were significantly different in the training set and validation set. Additionally, gene set enrichment analysis revealed that the genes in the signature may affect the cell cycle, gap junctions, and interleukin-6 production. Therefore, the three-gene survival risk signature could potentially predict the prognosis of patients with OS. Further, proteins encoded by CPE and LY86 may provide novel insights into the prediction of OS prognosis and therapeutic targets.


Subject(s)
Bone Neoplasms/mortality , Bone Neoplasms/pathology , Osteosarcoma/mortality , Osteosarcoma/pathology , Bone Neoplasms/diagnosis , Gene Expression Profiling , Gene Expression Regulation, Neoplastic , Humans , Kaplan-Meier Estimate , Multivariate Analysis , Neoplasm Metastasis , Nomograms , Oligonucleotide Array Sequence Analysis , Osteosarcoma/diagnosis , Prognosis , Protein Interaction Mapping , ROC Curve , Regression Analysis , Risk , Risk Assessment , Risk Factors , Treatment Outcome
13.
Stem Cell Res Ther ; 10(1): 279, 2019 08 30.
Article in English | MEDLINE | ID: mdl-31470890

ABSTRACT

OBJECTIVE: Autograft microskin transplantation has been widely used as a skin graft therapy in full-thickness skin defect. However, skin grafting failure can lead to a pathological delay wound healing due to a poor vascularization bed. Considering the active role of adipose-derived stem cell (ADSC) in promoting angiogenesis, we intend to investigate the efficacy of autograft microskin combined with ADSC transplantation for facilitating wound healing in a full-thickness skin defect mouse model. MATERIAL AND METHODS: An in vivo full-thickness skin defect mouse model was used to evaluate the contribution of transplantation microskin and ADSC in wound healing. The angiogenesis was detected by immunohistochemistry staining. In vitro paracrine signaling pathway was evaluated by protein array and Gene Ontology, Kyoto Encyclopedia of Genes and Genomes pathway, and protein-protein interaction network analysis. RESULTS: Co-transplantation of microskin and ADSC potentiated the wound healing with better epithelization, smaller scar thickness, and higher angiogenesis (CD31) in the subcutaneous layer. We found both EGF and VEGF cytokines were secreted by microskin in vitro. Additionally, secretome proteomic analysis in a co-culture system of microskin and ADSC revealed that ADSC could secrete a wide range of important molecules to form a reacting network with microskin, including VEGF, IL-6, EGF, uPAR, MCP-3, G-CSF, and Tie-2, which most likely supported the angiogenesis effect as observed. CONCLUSION: Overall, we concluded that the use of ADSC partially modulates microskin function and enhances wound healing by promoting angiogenesis in a full-thickness skin defect mouse model.


Subject(s)
Adipocytes/cytology , Autografts/cytology , Skin/cytology , Stem Cells/cytology , Wound Healing/physiology , Animals , Disease Models, Animal , Male , Mice , Mice, Inbred BALB C , Proteomics/methods , Skin Transplantation/methods , Transplantation, Autologous/methods , Transplantation, Homologous/methods
14.
J Vis Exp ; (147)2019 05 20.
Article in English | MEDLINE | ID: mdl-31157767

ABSTRACT

Joint contracture, resulting from a prolonged joint immobilization, is a common complication in orthopedics. Currently, utilizing an internal fixation to restrict knee joint mobility is a widely accepted model to generate experimental contracture. However, implanting application will inevitably cause surgical trauma to the animals. Aiming to develop a less invasive approach, we combined a muscle-gap separation modus with a previously reported mini-incision skill during the surgical procedure: Two mini skin incisions were made on the lateral thigh and leg, followed by performing muscle-gap separation to expose the bone surface. The rat knee joint was gradually immobilized by a preconstructed internal fixation at approximately 135° knee flexion without interfering essential nerves or blood vessels. As expected, this simple technique permits rapid postoperative rehabilitation in animals. The correct position of the internal fixation was confirmed by an x-ray or micro-CT scanning analysis. The range of motion was significantly restricted in the immobilized knee joint than that observed in the contralateral knee joint demonstrating the effectiveness of this model. Besides, histological analysis revealed the development of fibrous deposition and adhesion in the posterior-superior knee joint capsule over time. Thus, this mini-invasive model may be suitable for mimicking the development of immobilized knee joint contracture.


Subject(s)
Contracture/physiopathology , Immobilization/methods , Knee Joint/physiopathology , Animals , Contracture/pathology , Disease Models, Animal , Fibrosis , Joint Capsule/pathology , Knee Joint/pathology , Male , Range of Motion, Articular , Rats , Tissue Adhesions
15.
Exp Cell Res ; 369(2): 325-334, 2018 08 15.
Article in English | MEDLINE | ID: mdl-29856991

ABSTRACT

Joint contracture is a common complication for people with joint immobility that involves fibrosis structural alteration in the joint capsule. Considering that endoplasmic reticulum (ER) stress plays a prominent role in the promotion of tissue fibrosis, we investigated whether the unfolded protein response (UPR) contributes to the fibrotic development in immobilization-induced knee joint contractures. Using a non-traumatic rat knee joint contracture model, twelve female Sprague-Dawley rats received knee joint immobilization for a period of 8 weeks. We found that fibrosis protein markers (type I collagen, α-SMA) and UPR (GRP78, ATF6α, XBP1s) markers were parallelly upregulated in rat primary cultured synovial myofibroblasts. In the same cell types, pre-treatment with an ER stress inhibitor, 4-phenylbutyric acid (4-PBA), not only abrogated cytokine TGFß1 stimulation but also reduced the protein level of UPR. Additionally, high reactive oxygen species (ROS) generation was detected in synovial myofibroblasts through flow cytometry, as expected. Notably, TGFß1-induced UPR was significantly reduced through the inhibition of ROS with antioxidants. These data suggest that ER stress act as a pro-fibrotic stimulus through the overexpression of ROS in synovial fibroblasts. Interestingly, immunohistochemical results showed an increase in the UPR protein levels both in human acquired joint contractures capsule tissue and in animal knee joint contracture tissue. Together, our findings suggest that ER stress contributes to synovial myofibroblastic differentiation in joint capsule fibrosis and may also serve as a potential therapeutic target in joint contractures.


Subject(s)
Contracture/metabolism , Contracture/pathology , Endoplasmic Reticulum Stress , Joint Capsule/metabolism , Joint Capsule/pathology , Myofibroblasts/metabolism , Myofibroblasts/pathology , Adult , Animals , Antioxidants/pharmacology , Cell Differentiation , Disease Models, Animal , Endoplasmic Reticulum Chaperone BiP , Endoplasmic Reticulum Stress/drug effects , Female , Fibrosis , Humans , Knee Joint/metabolism , Knee Joint/pathology , Myofibroblasts/drug effects , Phenylbutyrates/pharmacology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Restraint, Physical , Transforming Growth Factor beta1/metabolism , Unfolded Protein Response/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...