Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Colloid Interface Sci ; 673: 893-900, 2024 Nov.
Article in English | MEDLINE | ID: mdl-38908288

ABSTRACT

Cervical cancer is one of the most common gynecological malignancies, with the vast majority of which being caused by persistent infection with Human Papillomavirus (HPV) 16 and 18. The current available HPV detection methods are sensitive and genotyped but are restricted by expensive instruments and skilled personnel. The development of an easy-to-use, rapid, and cost-friendly analysis method for HPV is of great need. Herein, hollow palladium-ruthenium nanocages modified with two oligonucleotides (PdRu capture probes) were constructed for genotyping and simultaneous detection of target nucleic acids HPV16 and HPV18 by dual lateral flow assay (DLFA). PdRu capture probes were endowed with bi-functions for the first time, which could be used to output signals and hybridize target nucleic acids. Under optimized conditions, the PdRu based-DLFA with detection limits of 0.93 nM and 0.19 nM, respectively, exhibited convenient operation, and high sensitivity. Meanwhile, the DLFA achieved excellent rapid detection within 20 min, which was attributed to capture probes that can be directly bound to amplification-free target nucleic acids. Therefore, the development of PdRu-based DLFA can be utilized for rapid, sensitive, and simultaneous genotyping detection of HPV16 and HPV18, showing great application for nucleic acid detection.


Subject(s)
Human papillomavirus 16 , Human papillomavirus 18 , Palladium , Palladium/chemistry , Humans , Human papillomavirus 16/genetics , Human papillomavirus 16/isolation & purification , Human papillomavirus 18/genetics , Human papillomavirus 18/isolation & purification , Ruthenium/chemistry , Nanostructures/chemistry , DNA, Viral/analysis , DNA, Viral/genetics , Surface Properties , Papillomavirus Infections/diagnosis , Papillomavirus Infections/virology , Limit of Detection , Particle Size , Nucleic Acid Hybridization , Human Papillomavirus Viruses
2.
Anal Methods ; 16(13): 1862-1869, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38463013

ABSTRACT

Cervical cancer (CC) remains one of the most severe global health challenges affecting women, primarily due to persistent infection with high-risk human papillomavirus (HPV) subtypes, particularly with HPV16 and HPV 18. Effective detection of these high-risk HPV strains is crucial for CC prevention. Current screening programs for HPV DNA include PCR and in situ hybridization, which are accurate and sensitive. However, these approaches demand a high level of expertise, along with expensive instruments and consumables, thus hindering their widespread use. Therefore, there is a compelling demand to develop an efficient, straightforward, and cost-effective method. Herein, we propose a lateral flow immunoassay (LFIA) method based on Au@PdPt nanoparticles for the simultaneous detection and genotyping of HPV16 and HPV18 within 15 min. This innovative approach allows for qualitative assessment by the naked eye and enables semi-quantitative detection through a smartphone. In this study, under optimal conditions, the qualitative visual limits of detection (vLOD) for HPV16 and HPV18 reached 0.007 nM and 0.01 nM, respectively, which were 32-fold and 20-fold more sensitive than conventional AuNPs-LFIA for HPV16 and HPV18, respectively. Meanwhile, semi-quantitative limits of detection (qLOD) for HPV16 and HPV18 were 0.05 nM and 0.02 nM, respectively. In conclusion, our formulated approach represents a significant step forward in HPV detection and genotyping, with the potential to enhance accessibility and effectiveness in the early diagnosis of CC at the point of care and beyond.


Subject(s)
Metal Nanoparticles , Papillomavirus Infections , Uterine Cervical Neoplasms , Female , Humans , Human papillomavirus 18/genetics , Human papillomavirus 16/genetics , Papillomavirus Infections/diagnosis , Papillomavirus Infections/prevention & control , Gold , Uterine Cervical Neoplasms/diagnosis , Uterine Cervical Neoplasms/prevention & control , DNA, Viral/genetics , DNA, Viral/analysis , Immunoassay
3.
Anal Methods ; 16(10): 1508-1514, 2024 Mar 07.
Article in English | MEDLINE | ID: mdl-38372146

ABSTRACT

Hepatocellular carcinoma (HCC) remains a leading cause of cancer-related mortality globally, ranking third in cancer deaths. Early diagnosis of HCC markers is imperative for effective prognosis and treatment. This study explores the utility of glycocholic acid (GCA) and alpha-fetoprotein (AFP) as biomarkers for liver diseases, with a specific focus on their simultaneous detection for enhanced diagnostic and prognostic capabilities. Harnessing the benefits of lateral flow immunoassay (LFIA), such as operational simplicity, speed, and accuracy, we engineered AgPd nanocomposites with antibodies targeting GCA and AFP. Under the optimized conditions, the visual detection limit for GCA was established at 50 ng mL-1 and the cut-off value at 104 ng mL-1. And for AFP, the visual detection limit was 0.1 ng mL-1 and the cut-off value was 500 ng mL-1. The accuracy and feasibility of the strips were validated through the detection of 39 actual serum samples. The results highlight the potential of LFIA as a rapid and effective tool for clinical diagnosis. The developed LFIA method not only demonstrates accuracy and feasibility but also presents a promising avenue for the early diagnosis of hepatocellular carcinoma.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Humans , alpha-Fetoproteins , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/pathology , Liver Neoplasms/diagnosis , Liver Neoplasms/pathology , Biomarkers, Tumor , Glycocholic Acid , Immunoassay/methods
4.
Sci Total Environ ; 867: 161565, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-36642266

ABSTRACT

This study screened a Trichoderma strain (Trichoderma pubescens DAOM 166162) from activated sludge to solve the limitation of traditional biological processes in the treatment of amoxicillin (AMO) containing wastewater. The mechanism of the removal of AMO wastewater by T. pubescens DAOM 166162 (TPC) was studied. AMO resulted in a higher protein percentage in the extracellular polymeric substances (EPS) secreted by TPC, which facilitated the removal of AMO from the wastewater. Fourier transform infrared spectroscopy and excitation-emission matrix were used to characterize EPS produced by metabolizing different carbon sources. It was found that the hydroxyl group was the primary functional group in EPS. The life activity of TPC was the cause of the pH rise. The main pathway of degradation of AMO by TPC was the hydroxyl group uncoupling the lactam ring and the hydrolysis of AMO in an alkaline environment. The removal efficiency of AMO in wastewater by TPC was >98 % (24 h), of which the biodegradation efficiency was 70.01 ± 1.48 %, and the biosorption efficiency was 28.44 ± 2.97 %. In general, TPC is an effective strain for treating wastewater containing AMO. This research provides a new idea for AMO wastewater treatment.


Subject(s)
Trichoderma , Wastewater , Sewage/chemistry , Extracellular Polymeric Substance Matrix/chemistry , Proteins/analysis
5.
Bioresour Technol ; 366: 128224, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36328174

ABSTRACT

Carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) cycling functional genes and bacterial and fungal communities during composting with biochar and biogas residue amendments were studied. Correlations between microbial community structure, functional genes and physicochemical properties were investigated by network analysis and redundancy analysis. It was shown that the gene of acsA abundance accounted for about 50% of the C-related genes. Biogas residue significantly decreased the abundance of denitrification gene nirK. Biogas residues can better promote the diversity of bacteria and fungi during composting. Biochar significantly increased the abundance of Humicola. Redundancy analysis indicated that pile temperature, pH, EC were the main physicochemical factors affecting the microbial community. WSC and NO3--N have significant correlation with C, N, P, S functional genes. The research provides a theoretical basis for clarifying the metabolic characteristics of microbial communities during composting and for the application of biochar and biogas residues in composting.


Subject(s)
Composting , Microbiota , Nitrogen/metabolism , Biofuels , Phosphorus , Carbon , Soil/chemistry , Charcoal , Microbiota/genetics , Bacteria/genetics , Bacteria/metabolism , Sulfur
6.
J Biochem Mol Toxicol ; 36(12): e23212, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36106352

ABSTRACT

Sirtuin1 (Sirt1)/forkhead box O1 (FoxO1) axis has been reported as a crucial regulator involved in chondral homeostasis of healthy or osteoarthritis (OA) cartilage. In our study, the aim is to investigate whether dioscin functions as an activator of Sirt1/FoxO1 to protect against mechanical stress-induced chondrocyte dysfunction in vitro and in vivo models. HERB and PubChem databases were implemented to predict dioscin-related gene targets. Cell and mouse models of OA were established to determine the pharmacological value of dioscin, a steroidal saponin. Cartilage loss in the knee joint was detected by Safranin O staining. Phosphorylation and nucleocytoplasmic shuttling of FoxO1 was observed in mechanical stress-stimulated chondrocyte and anterior cruciate ligament transection-induced cartilage injury. However, dioscin treatment repressed FoxO1 phosphorylation and cytoplasmic transfer and elevated Sirt1 protein expression. Dioscin treatment reversed mechanical stress-induced growth inhibition and apoptosis of chondrocytes and improved cartilage degradation and bone loss in the epiphysis of the distal femur. Moreover, dioscin could maintain the normal phenotype of chondrocytes via mediating multiple gene expressions. Dioscin inhibited apoptosis and metabolic disorders in OA-like chondrocytes via maintaining the transcriptional activity of FoxO1 and enhancing Sirt1 expression. Dioscin might be a potential Sirt1 activator providing a novel therapeutic schedule for the treatment of OA.


Subject(s)
Chondrocytes , Forkhead Box Protein O1 , Osteoarthritis , Sirtuin 1 , Animals , Mice , Apoptosis , Cartilage/metabolism , Chondrocytes/metabolism , Osteoarthritis/metabolism , Sirtuin 1/metabolism , Stress, Mechanical , Forkhead Box Protein O1/metabolism
7.
Front Psychol ; 13: 942474, 2022.
Article in English | MEDLINE | ID: mdl-36148108

ABSTRACT

Proper cognitive functions are critical to the life of the elderly. With the rapid aging of the population, community support plays an important role in cognitive functioning. This study examines the association between community support and the level of cognitive functioning in the elderly, and the mediating effect of social participation in the relationship. Based on the panel data of China Longitudinal Healthy Longevity Survey (CLHLS) in 2005, 2008, 2011, 2014, and 2018, people aged 65 and over are selected as the research object (N = 35,479). The panel Logit model is used to analyze the influence of community support on their cognitive functioning. In addition, the stepwise regression and KHB decomposition methods are used to test the influence mechanism of community support on their cognitive function. The benchmark regression results show that there is a significant correlation between community support and cognitive function in the elderly (OR: 1.64, 95% CI: 1.41-1.91, p < 0.01). Daily care (OR: 1.75, 95% CI: 1.33-2.29, p < 0.01) has the strongest impact on the cognitive function of the elderly, followed by health care (OR: 1.70, 95% CI: 1.43-2.01, p < 0.01) and legal support (OR: 1.64, 95% CI: 1.37-1.95, p < 0.01), while psychological care (OR: 1.62, 95% CI: 1.31-2.01, p < 0.01) has the weakest impact on the cognitive function of the elderly. The results of the mediation effect test show that social participation plays a significant intermediary role in the impact of community support on the cognitive function of the elderly (mediation percentage: 16.89%), demonstrating that community support can improve the cognitive function of the elderly by promoting the social participation of the elderly. In classified community support, social participation plays a significant intermediary role in the impact of psychological care on cognition (mediation percentage: 46.10%).

8.
J Ginseng Res ; 46(4): 526-535, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35818420

ABSTRACT

Background: During the pathogenesis of tendinopathy, the chronic inflammation caused by the injury and apoptosis leads to the generation of scars. Ginsenoside Rg1 (Rg1) is extracted from ginseng and has anti-inflammatory effects. Rg1 is a unique phytoestrogen that can activate the estrogen response element. This research aimed to explore whether Rg1 can function in the process of tendon repair through the estrogen receptor. Methods: In this research, the effects of Rg1 were evaluated in tenocytes and in a rat model of Achilles tendinitis (AT). Protein levels were shown by western blotting. qRT-PCR was employed for evaluating mRNA levels. Cell proliferation was evaluated through EdU assay and cell migration was evaluated by transwell assay and scratch test assay. Results: Rg1 up-regulated the expression of matrix-related factors and function of tendon in AT rat model. Rg1 reduced early inflammatory response and apoptosis in the tendon tissue of AT rat model. Rg1 promoted tenocyte migration and proliferation. The effects of Rg1 on tenocytes were inhibited by ICI182780. Rg1 activates the insulin-like growth factor-I receptor (IGF1R) and MAPK signaling pathway. Conclusion: Rg1 promotes injured tendon healing in AT rat model through IGF1R and MAPK signaling pathway activation.

9.
Bioresour Technol ; 360: 127608, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35840030

ABSTRACT

This study examined the effects of biochar, biogas residue, and their combined amendments on CO2 and CH4 emission, enzyme activity, and related functional genes during rice straw composting. Results showed that the biogas residue increased CO2 and CH4 emissions by 13.07 % and 74.65 %, while biochar had more obvious inhibition. Biogas residue addition enhanced functional gene abundance more than biochar. Biogas residue raised the methanogens mcrA gene by 2.5 times. Biochar improved the Acetyl-CoA synthase and ß-glucosidase activities related to carbon fixation and decreased coenzyme activities related to methanogens. Biochar and biogas residue combined amendments enhanced the acsB gene abundance for CO2 assimilation process and decreased methyl-coenzyme M reductase α subunit activity. Pearson correlation analysis indicated that organic matter was the significant variable affecting CO2 and CH4 emissions (P < 0.01). These results indicated biochar played significant roles in carbon loss and greenhouse emissions caused by biogas residue incorporation during composting.


Subject(s)
Composting , Biofuels , Carbon Dioxide/analysis , Charcoal , Methane , Nitrous Oxide/analysis , Soil/chemistry
10.
Chemistry ; 28(60): e202201145, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-35838639

ABSTRACT

The coordination chemistry of f-block elements (lanthanide and actinide) in molten salts has become a resounding topic in view of its great importance to the research and development (R&D) of molten salt reactors and pyroprocessing. In this Review article, a general overview of the coordination chemistry of f-block elements in molten salts is provided including past achievements and recent advances. Particular emphases are placed on the oxidation state, speciation, and solution structure of f-block metal ions in molten salts, as well as their relationships with the salt composition. Furthermore, this review briefly discusses the spectroscopic and theoretical methods that complement each other in revealing the coordination properties.

11.
Bioengineered ; 13(5): 13082-13088, 2022 05.
Article in English | MEDLINE | ID: mdl-35611765

ABSTRACT

To explore the molecular mechanism of cartilage calcification induced by osteoarthritis (OA) based on distal-less homeobox gene 5 - alkaline phosphatase - integrin-binding sialoprotein - ecto-nucleotide pyrophosphatase 1 (DLX5-ALPL-IBSP-ENPP1) signal axis. Twenty-four rabbits were selected to build models of cartilage calcification induced by OA and randomly divided into 3 groups. The first group was the normal group whose rabbits were injected into 0.9% saline (0.3 mL), and the second group was model group. The third group was model group whose rabbits were injected into DLX5 antibody by caudal vein. Alizarin red calcium staining was used to analyze calcium deposition of cartilage matrix. Immunohistochemical staining was used to analyze the relative expression levels of proteins DLX5 and ENPP1, and western blot was used to analyze the DLX5, ALPL, IBSP, and ENPP1 expression. Calcium salt precipitation was the most serious, and the calcification area increased in the model group. Although calcified nodules appeared in the anti-DLX5 group, they were relatively few. Immunohistochemical staining analysis showed that the protein DLX5 located in the nucleus and the protein ENPP1 located in the extracellular matrix. Western blot analysis showed that the expressions of proteins DLX5, ALPL, IBSP, and ENPP1 were the highest in OA Model group than that of NC group, followed by anti-DLX5 group. The proteins DLX5, ALPL, IBSP, and ENPP1 can promote cartilage calcification induced by OA based on DLX5-ALPL-IBSP-ENPP1 signal axis.


Subject(s)
Calcinosis , Calcium , Osteoarthritis , Animals , Cartilage/metabolism , Osteoarthritis/metabolism , Rabbits
12.
Bioresour Technol ; 357: 127359, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35618192

ABSTRACT

This study was carried out to determine the response characteristics of N2O emission, enzyme activities, and functional gene abundances involved in nitrification/denitirification process with biochar and biogas residue amendments during rice straw composting. The results revealed that N2O release mainly occurred during the second fermentation phase. Biogas residue amendment promoted N2O emission, while biochar addition decreased its emission by 33.6%. The nirK gene was abundant through composting process. Biogas residues increased the abundance of denitrification genes, resulting in further release of N2O. Biochar enhanced nosZ gene abundance and accelerated the reduction of N2O. Nitrate reductase (NR), nitrite reductase (NiR), N2O reductase (N2OR), and ammonia monooxygenase (AMO) activities were greatly stimulated by biochar or biogas residue rather than their combined addition. Pearson regression analysis indicated that N2O emission negatively correlated with ammonium and positively correlated with nosZ, nirK, 18S rDNA, total nitrogen, and nitrate (P < 0.05).


Subject(s)
Composting , Oryza , Biofuels , Charcoal , Denitrification/genetics , Nitrification , Nitrous Oxide/analysis , Oryza/genetics , Soil/chemistry
13.
Inorg Chem ; 61(17): 6519-6529, 2022 May 02.
Article in English | MEDLINE | ID: mdl-35426301

ABSTRACT

In this work, we investigated the dissolution behavior of U3O8 and UO3 in the LiCl-KCl molten salt using 2.9 or 9.5 wt % AlCl3 as a chlorination agent under an argon atmosphere at 450 °C. Ultraviolet-visible/Ultraviolet-visible-near infrared absorption spectroscopy (UV-vis/UV-vis-NIR), fluorescence emission spectroscopy (FL), X-ray absorption fine structure (XAFS), and electrochemical techniques were used to systematically study the chemical species and the transformation of the dissolved products of U3O8 and UO3. It was found that with the aid of AlCl3, the initial products of U3O8 and UO3 dissolution were different. The initial products of U3O8 were UO2Cl42- and UCl62-, while the initial product of UO3 dissolution was UO2Cl42-. Interestingly, regardless of U3O8 or UO3, with the increase of AlCl3 content, the UO2Cl42- in their dissolved products showed a tendency to transform into UCl62-. In addition, UCl4 was produced by mixing 0.05 g of U3O8/UO3 powders with 10 times the amount of AlCl3 and heating them at 300 °C for 2 h. This work focuses on the pyrochemical reprocessing of spent oxide fuels, deepening the understanding of the dissolution of uranium oxides in higher oxidation states, and enriching the knowledge of uranium in the transformation of chemical species in molten salts.

14.
Article in English | MEDLINE | ID: mdl-35280506

ABSTRACT

Osteoarthritis is a common degenerative joint disease that can cause pain and disability in patients. There is still a lack of effective treatments to improve pathological changes of osteoarthritis cartilages and reverse the progression of osteoarthritis. Our study aimed to investigate the role of Dlx5 in papain-induced osteoarthritis. Osteoarthritis was induced through intraarticular injection of papain. The pathological damage of cartilage tissues was analyzed by H&E staining. The apoptosis of cartilage tissues was detected by TUNEL assay. Immunohistochemical staining was performed to detect DLX5 and BMP-2. Western blot was performed to detect the expressions of SP7, caspase-3, and MYC. The results showed that administration of anti-Dlx5 improved pathological changes of osteoarthritis cartilages, characterized by decreased chondrocyte proliferation, chondrocyte hypertrophy, and matrix damage. Anti-Dlx5 treatment decreased the expressions of BMP-2 and SP7, which are positive regulators of chondrocyte hypertrophy. Moreover, MYC and caspase-3, the critical mediators for chondrocyte apoptosis, were both decreased after anti-Dlx5 treatment. In conclusion, anti-Dlx5 retarded the progression of osteoarthritis by downregulating chondrocyte hypertrophy and chondrocyte apoptosis-related genes. Our findings suggests that Dlx5 is a promising target for osteoarthritis treatment.

15.
Bioengineered ; 13(3): 5434-5442, 2022 03.
Article in English | MEDLINE | ID: mdl-35184641

ABSTRACT

Aging is an important risk factor for osteoarthritis (OA). Butorphanol is a preoperative sedative and analgesic that possesses anti-inflammatory activity. However, the effect of butorphanol on OA has not been reported. Here we aimed to explore the effect of butorphanol tartrate on the cellular senescence of human chondrocyte-articular (HC-A) cells in response to tumor necrosis factor-α (TNF-α) stimulation. Butorphanol tartrate attenuated the TNF-α-caused cellular senescence of HC-A cells, with decreased positive senescence-associated-ß-galactosidase (SA-ß-gal) staining and elevated telomerase activity. Butorphanol tartrate prevented TNF-α-caused cell cycle arrest in the G0/G1 phase in HC-A cells and decreased p21 expression. The TNF-α-induced production of interleukin (IL)-6 and IL-8 in HC-A cells were mitigated by butorphanol tartrate. In addition, butorphanol tartrate reduced p-NF-κB p65/total p65 and p-STAT3/STAT3 ratios in HC-A cells cultured with TNF-α. Taken together, butorphanol tartrate protected HC-A cells from TNF-α-caused cellular senescence through inactivation of NF-κB and STAT3. These results imply that butorphanol tartrate might be used as a potential agent for the treatment of aging-related OA.


Subject(s)
Osteoarthritis , Tumor Necrosis Factor-alpha , Butorphanol/metabolism , Butorphanol/pharmacology , Cells, Cultured , Cellular Senescence , Chondrocytes/metabolism , Humans , Interleukin-6/metabolism , NF-kappa B/metabolism , Osteoarthritis/metabolism , Tumor Necrosis Factor-alpha/metabolism
16.
Gerontology ; 68(4): 431-441, 2022.
Article in English | MEDLINE | ID: mdl-34979511

ABSTRACT

OBJECTIVE: CircCCDC66 is involved in cancer progression, but its role in osteoarthritis (OA) remains unknown. This study was carried out to explore the biological role of circCCDC66 in OA and its underlying mechanism. METHODS: The expression levels of miR-3622b-5p and circCCDC66 in OA cartilage tissues were detected by qRT-PCR. Cell Counting Kit-8 (CCK8) and flow cytometry were used to detect the chondrocyte viability and apoptosis. The expression of chondrocyte inflammatory factors (IL-6 and TNF-α) was measured by ELISA. The target genes of circCCDC66 and miR-3622b-5p were analyzed by bioinformatics analysis and luciferase reporter gene assay. The relationship between circCCDC66 and miR-3622b-5p was analyzed by bioinformatics analysis and luciferase reporter gene assay. RESULTS: It was found that circCCDC66 expression in OA cartilage tissues was upregulated. CircCCDC66 overexpression inhibited proliferation and promoted apoptosis of chondrocytes and increased IL-6 and TNF-α levels in chondrocytes. miR-3622b-5p was predicted to be a downstream target gene of circCCDC66, and circCCDC66 overexpression inhibited miR-3622b-5p expression in chondrocytes. Moreover, miR-3622b-5p expression was downregulated in OA cartilage tissues. miR-3622b-5p overexpression increased chondrocyte proliferation, inhibited chondrocyte apoptosis, and enhanced the expression of IL-6 and TNF-α in chondrocytes. In addition, circCCDC66 overexpression enhanced SIRT3 expression in chondrocytes, while miR-3622b-5p overexpression inhibited SIRT3 expression in chondrocytes. CONCLUSION: CircCCDC66 promoted OA chondrocyte apoptosis by regulating the miR-3622b-5p/SIRT3 axis. CircCCDC66 may be a new therapeutic target of OA.


Subject(s)
MicroRNAs , Osteoarthritis , Sirtuin 3 , Apoptosis/genetics , Eye Proteins , Humans , Interleukin-1beta/pharmacology , Interleukin-6/genetics , MicroRNAs/genetics , Osteoarthritis/genetics , Osteoarthritis/metabolism , RNA, Circular/genetics , Tumor Necrosis Factor-alpha/genetics
17.
Nat Commun ; 12(1): 5777, 2021 Oct 01.
Article in English | MEDLINE | ID: mdl-34599195

ABSTRACT

Electrorefining process has been widely used to separate and purify metals, but it is limited by deposition potential of the metal itself. Here we report in-situ anodic precipitation (IAP), a modified electrorefining process, to purify aluminium from contaminants that are more reactive. During IAP, the target metals that are more cathodic than aluminium are oxidized at the anode and forced to precipitate out in a low oxidation state. This strategy is fundamentally based on different solubilities of target metal chlorides in the NaAlCl4 molten salt rather than deposition potential of metals. The results suggest that IAP is able to efficiently and simply separate components of aluminum alloys with fast kinetics and high recovery yields, and it is also a valuable synthetic approach for metal chlorides in low oxidation states.

18.
Chemistry ; 27(45): 11721-11729, 2021 Aug 11.
Article in English | MEDLINE | ID: mdl-34105835

ABSTRACT

Molten salt electrolysis is a vital technique to produce high-purity lanthanide metals and alloys. However, the coordination environments of lanthanides in molten salts, which heavily affect the related redox potential and electrochemical properties, have not been well elucidated. Here, the competitive coordination of chloride and fluoride anions towards lanthanide cations (La3+ and Nd3+ ) is explored in molten LiCl-KCl-LiF-LnCl3 salts using electrochemical, spectroscopic, and computational approaches. Electrochemical analyses show that significant negative shifts in the reduction potential of Ln3+ occur when F- concentration increases, indicating that the F- anions interact with Ln3+ via substituting the coordinated Cl- anions, and confirm [LnClx Fy ]3-x-y (ymax =3) complexes are prevailing in molten salts. Spectroscopic and computational results on solution structures further reveal the competition between Cl- and F- anions, which leads to the formation of four distinct Ln(III) species: [LnCl6 ]3- , [LnCl5 F]3- , [LnCl4 F2 ]3- and [LnCl4 F3 ]4- . Among them, the seven-coordinated [LnCl4 F3 ]4- complex possesses a low-symmetry structure evidenced by the pattern change of Raman spectra. After comparing the polarizing power (Z/r) among different metal cations, it was concluded that Ln-F interaction is weaker than that between transition metal and F- ions.

19.
Zhongguo Zhong Yao Za Zhi ; 46(1): 177-182, 2021 Jan.
Article in Chinese | MEDLINE | ID: mdl-33645068

ABSTRACT

The aim of this paper was to investigate the effect of ethanol extract of Phellinus igniarius in lowering uric acid and changing the gut microbiome in hyperuricemia rats. A total of 36 SD rats were randomly divided into normal control group, model control group, positive drug control group, and high-dose, middle-dose and low-dose P. igniarius ethanol extract groups, with 6 rats in each group. Hyperuricemia rats were established by D-fructose combined with oteracil potassium(OAPS). One week later, the positive control group was given allopurinol 50 mg·kg~(-1) intragastrically, and P. igniarius ethanol extract groups were treated with 30, 60 and 90 mg·kg~(-1) drugs for 14 consecutive days. Body weight, blood glucose and serum uric acid(SUA) were monitored every week. After the model rats were administered with the ethanol extracts of P. igniarius by gavage for two weeks, the activities of creatinine, BUN, xanthine oxidase(XOD) and adenosine deaminase(ADA) were detected. The right kidney was taken to analyze the histological and morphological changes and the degree of damage to main organs of the extract of P. igniarius. The 16 S rDNA gene sequence technique was used to analyze the guts microbiota composition in feces. The results indicated that ethanol extract of P. igniarius could significantly lower the SUA level(P<0.01), while inhibiting the activities of XOD and ADA(P<0.05, P<0.01). Histological examination showed that the allopurine group showed slight renal tubular dilation and inflammatory cell infiltration compared with the normal group, with no significant difference between the P. igniarius ethanol extract groups and the normal group. The 16 S sequencing results showed that the composition of gut microbiota has changed in each group. Therefore, ethanol extracts of P. igniarius may reduce the level of SUA in rats by inhibiting the activities of XOD and ADA, with a certain effect on the composition of gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Hyperuricemia , Animals , Ethanol , Phellinus , Plant Extracts , Rats , Rats, Sprague-Dawley , Uric Acid
20.
Chemosphere ; 252: 126542, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32213372

ABSTRACT

This work focused on dewatering performance and heavy metals (HMs) transformation during waste activated sludge (WAS) treatment by employing thermally-activated sodium persulfate (SPS) oxidation combined with a biochar made of wheat straw (WS-BC). Results demonstrated that the combined treatment was an efficient way to improve WAS dewatering, especially when SPS and WS-BC dosages were adjusted to 120 and 150 mg/g-volatile solids (VS), respectively. After being treated at 70 °C without pH adjustment, standardized-capillary suction time (SCST) was increased to 5.03, centrifuged weight reduction (CWR) was increased to 86.8% and moisture content (MC) was decreased to 42.6%, indicating an excellent dewatering performance. The underlying mechanism identified were: (1) SPS oxidation disintegrated extracellular polymers (EPS) at high temperature, thereby releasing EPS-bound water; (2) WS-BC acted as a skeleton builder conducive to form porous structure and provide free water release channels in WAS, which was favorable to improve dewatering properties of WAS; (3) thermally-activated SPS oxidation significantly improved the solubilization and reduced the leaching toxicity of HMs in WAS; and (4) the following WS-BC treatment further reduced the leaching toxicity of HMs in WAS. Therefore, the combined technology might be a promising strategy to improve WAS dewatering and reduce HMs risks in WAS.


Subject(s)
Waste Disposal, Fluid/methods , Charcoal/chemistry , Hot Temperature , Metals, Heavy/chemistry , Oxidation-Reduction , Polymers/chemistry , Sewage/chemistry , Sodium Compounds , Sulfates , Triticum , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...