Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Nat Chem ; 14(7): 794-800, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35449217

ABSTRACT

Polynitrogen molecules are attractive for high-energy-density materials due to energy stored in nitrogen-nitrogen bonds; however, it remains challenging to find energy-efficient synthetic routes and stabilization mechanisms for these compounds. Direct synthesis from molecular dinitrogen requires overcoming large activation barriers and the reaction products are prone to inherent inhomogeneity. Here we report the synthesis of planar N62- hexazine dianions, stabilized in K2N6, from potassium azide (KN3) on laser heating in a diamond anvil cell at pressures above 45 GPa. The resulting K2N6, which exhibits a metallic lustre, remains metastable down to 20 GPa. Synchrotron X-ray diffraction and Raman spectroscopy were used to identify this material, through good agreement with the theoretically predicted structural, vibrational and electronic properties for K2N6. The N62- rings characterized here are likely to be present in other high-energy-density materials stabilized by pressure. Under 30 GPa, an unusual N20.75--containing compound with the formula K3(N2)4 was formed instead.

2.
Phys Rev Lett ; 125(25): 255702, 2020 Dec 18.
Article in English | MEDLINE | ID: mdl-33416341

ABSTRACT

We report a new hydrogen clathrate hydrate synthesized at 1.2 GPa and 298 K documented by single-crystal x-ray diffraction, Raman spectroscopy, and first-principles calculations. The oxygen sublattice of the new clathrate hydrate matches that of ice II, while hydrogen molecules are in the ring cavities, which results in the trigonal R3c or R3[over ¯]c space group (proton ordered or disordered, respectively) and the composition of (H_{2}O)_{6}H_{2}. Raman spectroscopy and theoretical calculations reveal a hydrogen disordered nature of the new phase C_{1}^{'}, distinct from the well-known ordered C_{1} clathrate, to which this new structure transforms upon compression and/or cooling. This new clathrate phase can be viewed as a realization of a disordered ice II, unobserved before, in contrast to all other ordered ice structures.

3.
Regul Toxicol Pharmacol ; 96: 48-56, 2018 Jul.
Article in English | MEDLINE | ID: mdl-29715492

ABSTRACT

A 90-day feeding study in rats was conducted to evaluate the subchronic oral toxicity of genetically modified (GM) DAS-81419-2 soybean. Wistar rats were fed with diets containing toasted soybean meal produced from DAS-81419-2 soybean grain that expresses the Cry1F, Cry1Ac, and Pat proteins or containing conventional soybean at doses of 30.0%, 15.0%, 7.5%, or 0% (control group) for 90 consecutive days. The general behavior, body weight and food consumption were observed. At the middle and end of the experiment, blood, serum, and urine samples were collected for biochemical assays. At the conclusion of the study, the internal organs were weighed and histopathological examination was completed. The rats exhibited free movement and shiny coats without any abnormal symptoms or abnormal secretions in their noses, eyes, or mouths. There were no adverse effects on body weight in GM soybean groups and conventional soybean groups. No biological differences in hematological, biochemical, or urine indices were observed. No significant differences in relative organ weights were detected between the experimental groups and the control group. No histopathological changes were observed. Under the conditions of this study, DAS-81419-2 soybean did not cause any treatment-related effects in Wistar rats following 90 days of dietary administration.


Subject(s)
Animal Feed/analysis , Dietary Supplements/analysis , Food, Genetically Modified/toxicity , Glycine max/genetics , Plants, Genetically Modified/toxicity , Animals , Female , Food, Genetically Modified/adverse effects , Male , Plants, Genetically Modified/adverse effects , Plants, Genetically Modified/genetics , Rats , Rats, Wistar
4.
J Chem Phys ; 148(1): 014503, 2018 Jan 07.
Article in English | MEDLINE | ID: mdl-29306271

ABSTRACT

Dichalcogenides are known to exhibit layered solid phases, at ambient and high pressures, where 2D layers of chemically bonded formula units are held together by van der Waals forces. These materials are of great interest for solid-state sciences and technology, along with other 2D systems such as graphene and phosphorene. SiS2 is an archetypal model system of the most fundamental interest within this ensemble. Recently, high pressure (GPa) phases with Si in octahedral coordination by S have been theoretically predicted and also experimentally found to occur in this compound. At variance with stishovite in SiO2, which is a 3D network of SiO6 octahedra, the phases with octahedral coordination in SiS2 are 2D layered. Very importantly, this type of semiconducting material was theoretically predicted to exhibit continuous bandgap closing with pressure to a poor metallic state at tens of GPa. We synthesized layered SiS2 with octahedral coordination in a diamond anvil cell at 7.5-9 GPa, by laser heating together elemental S and Si at 1300-1700 K. Indeed, Raman spectroscopy up to 64.4 GPa is compatible with continuous bandgap closing in this material with the onset of either weak metallicity or of a narrow bandgap semiconductor state with a large density of defect-induced, intra-gap energy levels, at about 57 GPa. Importantly, our investigation adds up to the fundamental knowledge of layered dichalcogenides.

5.
Acta Crystallogr C Struct Chem ; 70(Pt 2): 112-7, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24508955

ABSTRACT

In this article, the crystal structure of solid hydrazine under pressure has been extensively investigated using ab initio evolutionary simulation methods. Calculations indicate that hydrazine remains both insulating and stable up to at least 300 GPa at low temperatures. A structure with P21 symmetry is found for the first time through theoretical prediction in the pressure range 0-99 GPa and it is consistent with previous experimental results. Two novel structures are also proposed, in the space groups Cc and C2/c, postulated to be stable in the range 99-235 GPa and above 235 GPa, respectively. Below 3.5 GPa, C2 symmetry is found originally, but it becomes unstable after adding the van der Waals interactions. The P21→Cc transition is first order, with a volume discontinuity of 2.4%, while the Cc→C2/c transition is second order with a continuous volume change. Pressure-induced hydrogen-bond symmetrization occurs at 235 GPa during the Cc→C2/c transition. The underlying mechanism of hydrogen-bond symmetrization has also been investigated by analysis of electron localization functions and vibrational Raman/IR spectra.

6.
PLoS One ; 8(2): e57779, 2013.
Article in English | MEDLINE | ID: mdl-23469066

ABSTRACT

Colorectal cancer is one of the most serious illnesses among diagnosed cancer. As a new type of anti-cancer composition from tocotrienol-rich fraction of palm oil, γ-tocotrienol is widely used in anti-cancer research. The objectives of this study were to investigate the effects of γ-tocotrienol on human colon cancer SW620 and HCT-8 cells. We showed that treatment with different concentrations of γ-tocotrienol resulted in a dose dependent inhibition of cell growth. Cell death induced by γ-tocotrienol was mediated by a paraptosis-like cell death in SW620 and HCT-8 cells. Real-time RT-PCR and western blot analyses showed that γ-tocotrienol inhibited the expression level of ß-catenin, cyclin D1 and c-jun. These data suggest that a paraptosis-like cell death induced by γ-tocotrienol in SW620 cells is associated with the suppression of the Wnt signaling pathway, which offers a novel tool for treating apoptosis-resistance colon cancer.


Subject(s)
Antineoplastic Agents/pharmacology , Chromans/pharmacology , Colonic Neoplasms/pathology , Vitamin E/analogs & derivatives , Caspase 3/metabolism , Cell Death/drug effects , Cell Line, Tumor , Cell Proliferation/drug effects , Enzyme Activation/drug effects , Gene Expression Regulation, Neoplastic/drug effects , Humans , Signal Transduction/drug effects , Vacuoles/drug effects , Vacuoles/metabolism , Vitamin E/pharmacology , Wnt Proteins/genetics , Wnt Proteins/metabolism
7.
Toxicology ; 285(1-2): 8-17, 2011 Jul 11.
Article in English | MEDLINE | ID: mdl-21453743

ABSTRACT

Tocotrienol is considered a beneficial effect agent on inhibition of tumor development. In this study, we focused on the effects of δ-tocotrienol and its possible mechanism on induction of death in human colon cancer SW620 cells. δ-Tocotrienol inhibited proliferation of SW620 cell in a dose-dependent manner. Our findings showed that δ-tocotrienol effectively induced paraptosis-like death in SW620 cells, correlated with the vacuolation that may be from welling and fusion of mitochondria and/or the endoplasmic reticulum (ER) as well as caspase-3 nonactivated. However, there were no changes in apoptosis based on flow cytometry analysis. Of being noted, δ-tocotrienol reduced the expression of ß-catenin and wnt-1 proteins by about 50% at the highest dose (20µmol/L). δ-Tocotrienol also decreased cyclin D1, c-jun and MMP-7 protein levels in SW620 cells. Altogether, these data indicate that δ-tocotrienol induces paraptosis-like cell death, which is associated with the suppression of the Wnt signaling pathway. Thus, our findings may provide a novel application in treatment of human colon carcinoma.


Subject(s)
Cell Death/drug effects , Cell Proliferation/drug effects , Colonic Neoplasms/drug therapy , Vitamin E/analogs & derivatives , Wnt Proteins/antagonists & inhibitors , Apoptosis/drug effects , Caspase 3/metabolism , Cell Line, Tumor , Colonic Neoplasms/pathology , Dose-Response Relationship, Drug , Flow Cytometry , Humans , Mitochondria/metabolism , Signal Transduction/drug effects , Vitamin E/administration & dosage , Vitamin E/pharmacology , Wnt Proteins/drug effects , Wnt1 Protein/antagonists & inhibitors
8.
Article in Chinese | MEDLINE | ID: mdl-21241565

ABSTRACT

OBJECTIVE: To investigate the influence of ethylbenzene on oxidative damage, ultrastructure and the expressions of apoptosis-related genes in the rat brain tissues. METHODS: Four groups of 10 males of Sprague-Dawley rats were allocated randomly, and inhaled daily with different doses of ethylbenzene: 0, 433.5 mg/m³, 4335.0 mg/m³, and 6500.0 mg/m³ 6 h daily, 5 days per week for 13 weeks. The contents of glutathione (GSH) and malondialdehyde (MDA) and activity of acetylcholinesterase (AChE) were assayed, respectively. The ultrastructure of brain tissues was observed via electron microscope. The gene expression levels of Bax, Bcl-2, cytochrome C, caspase-9 and caspase-3 in brain tissues were measured by real-time polymerase chain reaction (PCR), respectively. RESULTS: The contents of MDA [(2.03 ± 0.56), (4.17 ± 1.31) nmol/mg pro] in the brain tissues of 4335.0 mg/m³ and 6500.0 mg/m³ ethylbenzene-treated groups were significantly higher than that [(1.08 ± 0.26) nmol/mg pro] in the control group (P < 0.05), while AChE activities [(0.321 ± 0.066), (0.276 ± 0.031), (0.202 ± 0.041) U/mg] and GSH contents [(35.19 ± 15.08), (33.42 ± 15.32), (27.99 ± 7.53) mg/g pro] in all ethylbenzene-treated groups were remarkably depressed (P < 0.05, P < 0.05, respectively). After 6500.0 mg/m³ ethylbenzene inhalation, the nucleolus exhibit demilune with decreased mitochondria. Electrondense of myelin occurred in the injured nerve, ascribing to lipid peroxidationed membrane. The gene expression level of Bax in brain tissue of 4335.0 mg/m³ and 6500.0 mg/m³ ethylbenzene-treated group was significantly higher than that in the control group (P < 0.05). Compared with the control group, the gene expression levels of cytochrome C, caspase-9 and caspase-3 in all ethylbenzene-treated groups were enhanced (P < 0.05, P < 0.05, respectively), while bcl-2 gene expression levels in all ethylbenzene-treated groups were decreased (P < 0.05). CONCLUSION: Ethylbenzene can induce oxidative damage and apoptosis in brain tissues. The apoptotic mechanism might be involved with up-regulation of Bax, cytochrome C, caspase-9 and caspase-3, as well as restraint of Bcl-2.


Subject(s)
Apoptosis , Benzene Derivatives/toxicity , Brain/metabolism , Brain/ultrastructure , Oxidative Stress/drug effects , Animals , Brain/drug effects , Caspase 3/metabolism , Caspase 9/metabolism , Cytochromes c/metabolism , DNA Damage , Female , Gene Expression , Male , Proto-Oncogene Proteins c-bcl-2/metabolism , Rats , Rats, Sprague-Dawley , bcl-2-Associated X Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...