Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Acta Pharm Sin B ; 13(10): 4127-4148, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37799383

ABSTRACT

Articular cartilage (AC) injuries often lead to cartilage degeneration and may ultimately result in osteoarthritis (OA) due to the limited self-repair ability. To date, numerous intra-articular delivery systems carrying various therapeutic agents have been developed to improve therapeutic localization and retention, optimize controlled drug release profiles and target different pathological processes. Due to the complex and multifactorial characteristics of cartilage injury pathology and heterogeneity of the cartilage structure deposited within a dense matrix, delivery systems loaded with a single therapeutic agent are hindered from reaching multiple targets in a spatiotemporal matched manner and thus fail to mimic the natural processes of biosynthesis, compromising the goal of full cartilage regeneration. Emerging evidence highlights the importance of sequential delivery strategies targeting multiple pathological processes. In this review, we first summarize the current status and progress achieved in single-drug delivery strategies for the treatment of AC diseases. Subsequently, we focus mainly on advances in multiple drug delivery applications, including sequential release formulations targeting various pathological processes, synergistic targeting of the same pathological process, the spatial distribution in multiple tissues, and heterogeneous regeneration. We hope that this review will inspire the rational design of intra-articular drug delivery systems (DDSs) in the future.

2.
Int J Biol Macromol ; 217: 180-187, 2022 Sep 30.
Article in English | MEDLINE | ID: mdl-35835300

ABSTRACT

Rotator cuff repair remains a challenge clinically due to the high retear rate after surgical intervention. There is a significant need to develop functional biomaterials facilitating tendon-to-bone integration. In this study, hydroxyapatite (HA) incorporated polylactic acid (PLLA) aligned nanofibrous membranes were fabricated by electrospinning as a low-cost sustainable rotator cuff patch. The morphology, physical, mechanical and in vitro cell assays of the nanofibrous membranes were characterized. The results showed that the nanofibrous membrane maintained a rough surface and weakened hydrophobicity. It has excellent cytocompatibility, and the cells were oriented along the direction of fiber arrangement. What's more, the PLLA-HA nanofibrous membrane could increase the alkaline phosphatase (ALP) expression in rat bone marrow mesenchymal stem cells (BMSCs), indicating that the electrospinning PLLA-HA nanofibrous membrane can better induce the bone formation of rat BMSCs cells. When the mass ratio of PLLA to HA exceeds 3: 1, with the increase of the HA content, the patch showed rising induction ability. The results suggested that electrospinning PLLA-HA nanofibrous membranes are an ideal patch for promoting tendon-bone healing and reducing the secondary tear rate. Furthermore, the use of biodegradable polymers and low-cost preparation methods presented the possibility for commercial production of these nanofibrous membranes.


Subject(s)
Nanofibers , Animals , Durapatite , Polyesters/pharmacology , Rats , Rotator Cuff , Tissue Engineering/methods , Tissue Scaffolds
3.
J Nanobiotechnology ; 20(1): 25, 2022 Jan 06.
Article in English | MEDLINE | ID: mdl-34991615

ABSTRACT

BACKGROUND: The regeneration and repair of articular cartilage remains a major challenge for clinicians and scientists due to the poor intrinsic healing of this tissue. Since cartilage injuries are often clinically irregular, tissue-engineered scaffolds that can be easily molded to fill cartilage defects of any shape that fit tightly into the host cartilage are needed. METHOD: In this study, bone marrow mesenchymal stem cell (BMSC) affinity peptide sequence PFSSTKT (PFS)-modified chondrocyte extracellular matrix (ECM) particles combined with GelMA hydrogel were constructed. RESULTS: In vitro experiments showed that the pore size and porosity of the solid-supported composite scaffolds were appropriate and that the scaffolds provided a three-dimensional microenvironment supporting cell adhesion, proliferation and chondrogenic differentiation. In vitro experiments also showed that GelMA/ECM-PFS could regulate the migration of rabbit BMSCs. Two weeks after implantation in vivo, the GelMA/ECM-PFS functional scaffold system promoted the recruitment of endogenous mesenchymal stem cells from the defect site. GelMA/ECM-PFS achieved successful hyaline cartilage repair in rabbits in vivo, while the control treatment mostly resulted in fibrous tissue repair. CONCLUSION: This combination of endogenous cell recruitment and chondrogenesis is an ideal strategy for repairing irregular cartilage defects.


Subject(s)
Chondrogenesis/drug effects , Decellularized Extracellular Matrix , Hydrogels , Oligopeptides , Tissue Scaffolds/chemistry , Animals , Cartilage, Articular/cytology , Decellularized Extracellular Matrix/chemistry , Decellularized Extracellular Matrix/pharmacology , Hydrogels/chemistry , Hydrogels/pharmacology , Male , Mesenchymal Stem Cells/drug effects , Oligopeptides/chemistry , Oligopeptides/pharmacology , Rabbits , Tissue Engineering/methods
4.
Acta Biomater ; 140: 23-42, 2022 03 01.
Article in English | MEDLINE | ID: mdl-34896634

ABSTRACT

The ability of articular cartilage to repair itself is limited because it lacks blood vessels, nerves, and lymph tissue. Once damaged, it can lead to joint swelling and pain, accelerating the progression of osteoarthritis. To date, complete regeneration of hyaline cartilage exhibiting mechanical properties remains an elusive goal, despite the many available technologies. The inflammatory milieu created by cartilage damage is critical for chondrocyte death and hypertrophy, extracellular matrix breakdown, ectopic bone formation, and progression of cartilage injury to osteoarthritis. In the inflammatory microenvironment, mesenchymal stem cells (MSCs) undergo aberrant differentiation, and chondrocytes begin to convert or dedifferentiate into cells with a fibroblast phenotype, thereby resulting in fibrocartilage with poor mechanical qualities. All these factors suggest that inflammatory problems may be a major stumbling block to cartilage repair. To produce a milieu conducive to cartilage repair, multi-dimensional management of the joint inflammatory microenvironment in place and time is required. Therefore, this calls for elucidation of the immune microenvironment of cartilage repair after injury. This review provides a brief overview of: (1) the pathogenesis of cartilage injury; (2) immune cells in cartilage injury and repair; (3) effects of inflammatory cytokines on cartilage repair; (4) clinical strategies for treating cartilage defects; and (5) strategies for targeted immunoregulation in cartilage repair. STATEMENT OF SIGNIFICANCE: Immune response is increasingly considered the key factor affecting cartilage repair. It has both negative and positive regulatory effects on the process of regeneration and repair. Proinflammatory factors are secreted in large numbers, and necrotic cartilage is removed. During the repair period, immune cells can secrete anti-inflammatory factors and chondrogenic cytokines, which can inhibit inflammation and promote cartilage repair. However, inflammatory factors persist, which accelerate the degradation of the cartilage matrix. Furthermore, in an inflammatory microenvironment, MSCs undergo abnormal differentiation, and chondrocytes begin to transform or dedifferentiate into fibroblast-like cells, forming fibrocartilage with poor mechanical properties. Consequently, cartilage regeneration requires multi-dimensional regulation of the joint inflammatory microenvironment in space and time to make it conducive to cartilage regeneration.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Osteoarthritis , Cartilage Diseases/metabolism , Cell Differentiation/genetics , Chondrocytes , Chondrogenesis , Humans , Osteoarthritis/pathology , Tissue Engineering
5.
Stem Cells Int ; 2021: 5590479, 2021.
Article in English | MEDLINE | ID: mdl-34912460

ABSTRACT

Animal models play an important role in preclinical studies, especially in tissue engineering scaffolds for cartilage repair, which require large animal models to verify the safety and effectiveness for clinical use. The small ruminant models are most widely used in this field than other large animals because they are cost-effective, easy to raise, not to mention the fact that the aforementioned animal presents similar anatomical features to that of humans. This review discusses the experimental study of tissue engineering scaffolds for knee articular cartilage regeneration in small ruminant models. Firstly, the selection of these scaffold materials and the preparation process in vitro that have been already used in vivo are briefly reviewed. Moreover, the major factors influencing the rational design and the implementation as well as advantages and limitations of small ruminants are also demonstrated. As regards methodology, this paper applies principles and methods followed by most researchers in the process of experimental design and operation of this kind. By summarizing and comparing different therapeutic concepts, this paper offers suggestions aiming to increase the effectiveness of preclinical research using small ruminant models and improve the process of developing corresponding therapies.

6.
ACS Appl Mater Interfaces ; 13(20): 23369-23383, 2021 May 26.
Article in English | MEDLINE | ID: mdl-33979130

ABSTRACT

Articular cartilage (AC) lesions are fairly common but remain an obstacle for clinicians and researchers due to their poor self-healing capacity. Recently, a promising therapy based on the recruitment of autologous mesenchymal stem cells (MSCs) has been developed for the regeneration of full-thickness cartilage defects in the knee joint. In this study, a 3D-bioprinted difunctional scaffold was developed based on aptamer HM69-mediated MSC-specific recruitment and growth factor-enhanced cell chondrogenesis. The aptamer, which can specifically recognize and recruit MSCs, was first chemically conjugated to the decellularized cartilage extracellular matrix and then mixed with gelatin methacrylate to form a photocrosslinkable bioink ready for 3D bioprinting. Together with the growth factor that promoted cell chondrogenic differentiation, the biodegradable polymer poly(ε-caprolactone) was further chosen to impart mechanical strength to the 3D bioprinted constructs. The difunctional scaffold specifically recruited MSCs, provided a favorable microenvironment for cell adhesion and proliferation, promoted chondrogenesis, and thus greatly improved cartilage repair in rabbit full-thickness defects. In conclusion, this study demonstrated that 3D bioprinting of difunctional scaffolds could be a promising strategy for in situ AC regeneration based on aptamer-directed cell recruitment and growth-factor-enhanced cell chondrogenesis.


Subject(s)
Aptamers, Nucleotide/pharmacology , Bioprinting , Cartilage, Articular , Chondrogenesis , Tissue Engineering/methods , Animals , Cartilage, Articular/cytology , Cartilage, Articular/metabolism , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrogenesis/drug effects , Chondrogenesis/physiology , Intercellular Signaling Peptides and Proteins/pharmacology , Male , Printing, Three-Dimensional , Rabbits , Rats , Tissue Scaffolds/chemistry
7.
Front Bioeng Biotechnol ; 9: 664592, 2021.
Article in English | MEDLINE | ID: mdl-34017827

ABSTRACT

Biomaterials play a core role in cartilage repair and regeneration. The success or failure of an implanted biomaterial is largely dependent on host response following implantation. Host response has been considered to be influenced by numerous factors, such as immune components of materials, cytokines and inflammatory agents induced by implants. Both synthetic and native materials involve immune components, which are also termed as immunogenicity. Generally, the innate and adaptive immune system will be activated and various cytokines and inflammatory agents will be consequently released after biomaterials implantation, and further triggers host response to biomaterials. This will guide the constructive remolding process of damaged tissue. Therefore, biomaterial immunogenicity should be given more attention. Further understanding the specific biological mechanisms of host response to biomaterials and the effects of the host-biomaterial interaction may be beneficial to promote cartilage repair and regeneration. In this review, we summarized the characteristics of the host response to implants and the immunomodulatory properties of varied biomaterial. We hope this review will provide scientists with inspiration in cartilage regeneration by controlling immune components of biomaterials and modulating the immune system.

8.
Bioact Mater ; 6(10): 3620-3633, 2021 Oct.
Article in English | MEDLINE | ID: mdl-33869902

ABSTRACT

Despite intensive effort was made to regenerate injured meniscus by cell-free strategies through recruiting endogenous stem/progenitor cells, meniscus regeneration remains a great challenge in clinic. In this study, we found decellularized meniscal extracellular matrix (MECM) preserved native meniscal collagen and glycosaminoglycans which could be a good endogenous regeneration guider for stem cells. Moreover, MECM significantly promoted meniscal fibrochondrocytes viability and proliferation, increased the expression of type II collagen and proteoglycans in vitro. Meanwhile, we designed 3D-printed polycaprolactone (PCL) scaffolds which mimic the circumferential and radial collagen orientation in native meniscus. Taken these two advantages together, a micro-structure and micro-environment dually biomimetic cell-free scaffold was manipulated. This cell-free PCL-MECM scaffold displayed superior biocompatibility and yielded favorable biomechanical capacities closely to native meniscus. Strikingly, neo-menisci were regenerated within PCL-MECM scaffolds which were transplanted into knee joints underwent medial meniscectomy in rabbits and sheep models. Histological staining confirmed neo-menisci showed meniscus-like heterogeneous staining. Mankin scores showed PCL-MECM scaffold could protect articular cartilage well, and knee X-ray examination revealed same results. Knee magnetic resonance imaging (MRI) scanning also showed some neo-menisci in PCL-MECM scaffold group. In conclusion, PCL-MECM scaffold appears to optimize meniscus regeneration. This could represent a promising approach worthy of further investigation in preclinical applications.

9.
Acta Biomater ; 127: 131-145, 2021 06.
Article in English | MEDLINE | ID: mdl-33812074

ABSTRACT

Cartilage regeneration is a complex physiological process. Synovial macrophages play a critical immunomodulatory role in the acute inflammatory response surrounding joint injury. Due to the contrasting differences and heterogeneity of macrophage, the phenotype of macrophages are the key determinants of the healing response after cartilage injury. Biomaterials derived from extracellular matrix have been used for the repair and reconstruction of a variety of tissues by modulating the host macrophage response. However, the immunomodulatory effect of decellularized cartilage extracellular matrix (ECM) on macrophages has not been elucidated. It is necessary to clarify the immunomodulatory properties of decellularized cartilage matrix (DCM) to guide the design of cartilage regeneration materials. Here, we prepared porcine articular cartilage derived DCM and determined the response of mouse bone marrow-derived macrophages (BMDMs) to the pepsin-solubilized DCM (PDCM) in vitro. Macrophages activated by the PDCM could promote bone marrow-derived mesenchymal stem cells (BMSCs) invasion, migration, proliferation, and chondrogenic differentiation. Then, we verified that early optimization of the immunomodulatory effects of the cell-free DCM scaffold using IL-4 in vivo could achieve good cartilage regeneration in a rat knee osteochondral defect model. Therefore, this decellularized cartilage ECM scaffold combined with accurate and active immunomodulatory strategies provides a new approach for the development of cartilage regeneration materials. STATEMENT OF SIGNIFICANCE: This work reports a decellularized cartilage extracellular matrix (DCM) scaffold combined with an accurate and active immunomodulatory strategy to improve cartilage regeneration. Our findings demonstrated that the pepsin-solubilized DCM (PDCM) activated bone marrow-derived macrophages to polarize to a constructive macrophage phenotype. These polarized macrophages promoted bone marrow-derived mesenchymal stem cell invasion, migration, proliferation, and chondrogenic differentiation. DCM scaffolds combined with early-stage intra-articular injection of IL-4 created a wound-healing microenvironment and improved cartilage regeneration in a rat knee osteochondral defect model.


Subject(s)
Cartilage, Articular , Interleukin-4 , Animals , Chondrogenesis , Extracellular Matrix , Macrophages , Mice , Rats , Swine , Tissue Engineering , Tissue Scaffolds
10.
Bioact Mater ; 6(9): 2711-2728, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33665503

ABSTRACT

Articular cartilage defect repair is a problem that has long plagued clinicians. Although mesenchymal stem cells (MSCs) have the potential to regenerate articular cartilage, they also have many limitations. Recent studies have found that MSC-derived exosomes (MSC-Exos) play an important role in tissue regeneration. The purpose of this study was to verify whether MSC-Exos can enhance the reparative effect of the acellular cartilage extracellular matrix (ACECM) scaffold and to explore the underlying mechanism. The results of in vitro experiments show that human umbilical cord Wharton's jelly MSC-Exos (hWJMSC-Exos) can promote the migration and proliferation of bone marrow-derived MSCs (BMSCs) and the proliferation of chondrocytes. We also found that hWJMSC-Exos can promote the polarization of macrophages toward the M2 phenotype. The results of a rabbit knee osteochondral defect repair model confirmed that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration. We demonstrated that hWJMSC-Exos can regulate the microenvironment of the articular cavity using a rat knee joint osteochondral defect model. This effect was mainly manifested in promoting the polarization of macrophages toward the M2 phenotype and inhibiting the inflammatory response, which may be a promoting factor for osteochondral regeneration. In addition, microRNA (miRNA) sequencing confirmed that hWJMSC-Exos contain many miRNAs that can promote the regeneration of hyaline cartilage. We further clarified the role of hWJMSC-Exos in osteochondral regeneration through target gene prediction and pathway enrichment analysis. In summary, this study confirms that hWJMSC-Exos can enhance the effect of the ACECM scaffold and promote osteochondral regeneration.

11.
Cell Prolif ; 54(5): e13017, 2021 May.
Article in English | MEDLINE | ID: mdl-33704842

ABSTRACT

OBJECTIVES: CD49f is expressed on a variety of stem cells and has certain effects on their cytological functions, such as proliferation and differentiation potential. However, whether CD49f is expressed on the surface of adipose tissue-derived mesenchymal stem cells (ADSCs) and its effect on ADSCs has not been clarified. MATERIALS AND METHODS: The effects of in vitro culture passage and inflammatory factor treatment on CD49f expression and the adhesion ability of ADSCs from mice and rats were investigated. CD49f+ cells were selected from rat ADSCs (rADSCs) by magnetic-activated cell sorting (MACS), and the cellular functions of CD49f+ ADSCs and unsorted ADSCs, including their clonogenic, proliferation, adipogenic and osteogenic differentiation, migration and anti-apoptotic capacities, were compared. RESULTS: CD49f expression and the adhesion ability of ADSCs decreased with increasing in vitro culture passage number. TNF-α and IFN-γ treatment decreased CD49f expression but increased the adhesion ability of ADSCs. After CD49f was blocked with an anti-CD49f antibody, the adhesion ability of ADSCs was decreased. No significant difference in clonogenic activity was observed between unsorted ADSCs and CD49f+ ADSCs. CD49f+ ADSCs had greater proliferation, adipogenic and osteogenic differentiation, migration and anti-apoptotic capacities than unsorted ADSCs. CONCLUSION: In the current study, the expression of CD49f on ADSCs was identified for the first time. The expression of CD49f on ADSCs was influenced by in vitro culture passage number and inflammatory factor treatment. Compared with unsorted ADSCs, CD49f + ADSCs exhibited superior cellular functions, thus may have great application value in mesenchymal stem cell (MSC)-based therapies.


Subject(s)
Biomarkers/metabolism , Integrin alpha6/metabolism , Mesenchymal Stem Cells/metabolism , Adipogenesis , Adipose Tissue/cytology , Animals , Cell Differentiation , Cell Movement/drug effects , Cell Proliferation , Cells, Cultured , Gene Expression/drug effects , Integrin alpha6/genetics , Interleukin-1beta/pharmacology , Mesenchymal Stem Cells/cytology , Mice , Mice, Inbred C57BL , Osteogenesis , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/pharmacology
12.
Stem Cells Int ; 2021: 8882505, 2021.
Article in English | MEDLINE | ID: mdl-33628274

ABSTRACT

Injury of articular cartilage can cause osteoarthritis and seriously affect the physical and mental health of patients. Unfortunately, current surgical treatment techniques that are commonly used in the clinic cannot regenerate articular cartilage. Regenerative medicine involving stem cells has entered a new stage and is considered the most promising way to regenerate articular cartilage. In terms of theories on the mechanism, it was thought that stem cell-mediated articular cartilage regeneration was achieved through the directional differentiation of stem cells into chondrocytes. However, recent evidence has shown that the stem cell secretome plays an important role in biological processes such as the immune response, inflammation regulation, and drug delivery. At the same time, the stem cell secretome can effectively mediate the process of tissue regeneration. This new theory has attributed the therapeutic effect of stem cells to their paracrine effects. The application of stem cells is not limited to exogenous stem cell transplantation. Endogenous stem cell homing and in situ regeneration strategies have received extensive attention. The application of stem cell derivatives, such as conditioned media, extracellular vesicles, and extracellular matrix, is an extension of stem cell paracrine theory. On the other hand, stem cell pretreatment strategies have also shown promising therapeutic effects. This article will systematically review the latest developments in these areas, summarize challenges in articular cartilage regeneration strategies involving stem cells, and describe prospects for future development.

13.
Acta Biomater ; 114: 31-52, 2020 09 15.
Article in English | MEDLINE | ID: mdl-32652223

ABSTRACT

In the absence of timely and proper treatments, injuries to articular cartilage (AC) can lead to cartilage degeneration and ultimately result in osteoarthritis. Regenerative medicine and tissue engineering techniques are emerging as promising approaches for AC regeneration and repair. Although the use of cell-seeded scaffolds prior to implantation can regenerate and repair cartilage lesions to some extent, these approaches are still restricted by limited cell sources, excessive costs, risks of disease transmission and complex manufacturing practices. Recently developed acellular scaffold approaches that rely on the recruitment of endogenous cells to the injured sites avoid these drawbacks and offer great promise for in situ AC regeneration. Multiple endogenous stem/progenitor cells (ESPCs) are found in joint-resident niches and have the capability to migrate to sites of injury to participate in AC regeneration. However, the natural recruitment of ESPCs is insufficient, and the local microenvironment is hostile after injury. Hence, an endogenous cell recruitment strategy based on the combination of chemoattractants and acellular scaffolds to effectively and specifically recruit ESPCs and improve local microenvironment may provide new insights into in situ AC regeneration. This review provides a brief overview of: (1) the status of endogenous cell recruitment strategy; (2) the subpopulations, potential migration routes (PMRs) of joint-resident ESPCs and their immunomodulatory and reparative effects; (3) chemoattractants and their potential adverse effects; (4) scaffold-based drug delivery systems (SDDSs) that are utilized for in situ AC regeneration; and (5) the challenges and future perspectives of endogenous cell recruitment strategy for AC regeneration. STATEMENT OF SIGNIFICANCE: Although the endogenous cell recruitment strategy for articular cartilage (AC) regeneration has been investigated for several decades, much work remains to be performed in this field. Future studies should have the following aims: (1) reporting the up-to-date progress in the endogenous cell recruitment strategies; (2) determining the subpopulations of ESPCs, the cellular and molecular mechanisms underlying the migration of these cells and their anti-inflammatory, immunomodulatory and reparative effects; (3) elucidating the chemoattractants that enhance ESPC recruitment and their potential adverse effects; and (4) developing advanced SDDSs for chemoattractant dispatch. Herein, we present a systematic overview of the aforementioned issues to provide a better understanding of endogenous cell recruitment strategies for AC regeneration and repair.


Subject(s)
Cartilage Diseases , Cartilage, Articular , Mesenchymal Stem Cells , Humans , Regeneration , Tissue Engineering , Tissue Scaffolds
14.
Stem Cells Int ; 2020: 5690252, 2020.
Article in English | MEDLINE | ID: mdl-32676118

ABSTRACT

Hyaline articular cartilage lacks blood vessels, lymphatics, and nerves and is characterised by limited self-repair ability following injury. Traditional techniques of articular cartilage repair and regeneration all have certain limitations. The development of tissue engineering technology has brought hope to the regeneration of articular cartilage. The strategies of tissue-engineered articular cartilage can be divided into three types: "cell-scaffold construct," cell-free, and scaffold-free. In "cell-scaffold construct" strategies, seed cells can be autologous chondrocytes or stem. Among them, some commercial products with autologous chondrocytes as seed cells, such as BioSeed®-C and CaReS®, have been put on the market and some products are undergoing clinical trials, such as NOVOCART® 3D. The stem cells are mainly pluripotent stem cells and mesenchymal stem cells from different sources. Cell-free strategies that indirectly utilize the repair and regeneration potential of stem cells have also been used in clinical settings, such as TruFit and MaioRegen. Finally, the scaffold-free strategy is also a new development direction, and the short-term repair results of related products, such as NOVOCART® 3D, are encouraging. In this paper, the commonly used techniques of articular cartilage regeneration in surgery are reviewed. By studying different strategies and different seed cells, the clinical application status of tissue-engineered articular cartilage is described in detail.

15.
Oxid Med Cell Longev ; 2019: 8564681, 2019.
Article in English | MEDLINE | ID: mdl-31827706

ABSTRACT

Osteoarthritis (OA) is a multifactorial and inflammatory disease characterized by cartilage destruction that can cause disability among aging patients. There is currently no effective treatment that can arrest or reverse OA progression. Kruppel-like factor 2 (KLF2), a member of the zinc finger family, has emerged as a transcription factor involved in a wide variety of inflammatory diseases. Here, we identified that KLF2 expression is downregulated in IL-1ß-treated human chondrocytes and OA cartilage. Genetic and pharmacological overexpression of KLF2 suppressed IL-1ß-induced apoptosis and matrix degradation through the suppression of reactive oxygen species (ROS) production. In addition, KLF2 overexpression resulted in increased expression of heme oxygenase-1 (HO-1) and NAD(P)H dehydrogenase quinone 1 (NQO1) through the enhanced nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2). Further, Nrf2 inhibition abrogated the chondroprotective effects of KLF2. Safranin O/fast green and TUNEL staining demonstrated that adenovirus-mediated overexpression of KLF2 in joint cartilage protects rats against experimental OA by inhibiting cartilage degradation and chondrocyte apoptosis. Immunohistochemical staining revealed that KLF2 overexpression significantly decreases MMP13 expression caused by OA progression in vivo. This in vitro and in vivo study is the first to investigate the antioxidative effect and mechanisms of KLF2 in OA pathogenesis. Our results collectively provide new insights into OA pathogenesis regulated by KLF2 and a rationale for the development of effective OA intervention strategies.


Subject(s)
Antioxidant Response Elements/genetics , Arthritis, Experimental/prevention & control , Kruppel-Like Transcription Factors/metabolism , NF-E2-Related Factor 2/metabolism , Osteoarthritis/prevention & control , Oxidative Stress/drug effects , Protective Agents/pharmacology , Animals , Arthritis, Experimental/chemically induced , Arthritis, Experimental/metabolism , Arthritis, Experimental/pathology , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Disease Models, Animal , Enzyme Inhibitors/toxicity , Gene Expression Regulation/drug effects , Humans , In Vitro Techniques , Iodoacetic Acid/toxicity , Kruppel-Like Transcription Factors/genetics , Male , NF-E2-Related Factor 2/genetics , Osteoarthritis/chemically induced , Osteoarthritis/metabolism , Osteoarthritis/pathology , Rats , Rats, Sprague-Dawley , Reactive Oxygen Species/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...