Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Drug Dev Res ; 85(4): e22219, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38845211

ABSTRACT

Sepsis is a life-threatening organ dysfunction that endangers patient lives and is caused by an imbalance in the host defense against infection. Sepsis continues to be a significant cause of morbidity and mortality in critically sick patients. Oxymatrine (OMT), a quinolizidine alkaloid derived from the traditional Chinese herb Sophora flavescens Aiton, has been shown to have anti-inflammatory effects on a number of inflammatory illnesses according to research. In this study, we aimed to evaluate the therapeutic effects of OMT on sepsis and explore the underlying mechanisms. We differentiated THP-1 cells into THP-1 macrophages and studied the anti-inflammatory mechanism of OMT in a lipopolysaccharide (LPS)-induced THP-1 macrophage sepsis model. Activation of the receptor for advanced glycation end products (RAGE), as well as NF-κB, was assessed by Western blot analysis and immunofluorescence staining. ELISA was used to measure the levels of inflammatory factors. We found that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation and downstream inflammatory cytokine production in response to LPS stimulation. Finally, an in vivo experiment was performed on septic mice to further study the effect of OMT on injured organs. The animal experiments showed that OMT significantly inhibited HMGB1-mediated RAGE/NF-κB activation, protected against the inflammatory response and organ injury induced by CLP, and prolonged the survival rate of septic mice. Herein, we provide evidence that OMT exerts a significant therapeutic effect on sepsis by inhibiting the HMGB1/RAGE/NF-κB signaling pathway.


Subject(s)
Alkaloids , HMGB1 Protein , Inflammation , Lipopolysaccharides , NF-kappa B , Quinolizines , Receptor for Advanced Glycation End Products , Sepsis , Signal Transduction , Alkaloids/pharmacology , Alkaloids/therapeutic use , Quinolizines/pharmacology , Quinolizines/therapeutic use , Animals , Sepsis/drug therapy , Sepsis/complications , Sepsis/metabolism , NF-kappa B/metabolism , HMGB1 Protein/metabolism , HMGB1 Protein/antagonists & inhibitors , Humans , Receptor for Advanced Glycation End Products/metabolism , Signal Transduction/drug effects , Mice , Inflammation/drug therapy , Inflammation/metabolism , Male , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/therapeutic use , THP-1 Cells , Mice, Inbred C57BL , Macrophages/drug effects , Macrophages/metabolism , Matrines
2.
Respir Res ; 21(1): 277, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-33087114

ABSTRACT

BACKGROUND: Prior studies reported that 5 ~ 32% COVID-19 patients were critically ill, a situation that poses great challenge for the management of the patients and ICU resources. We aim to identify independent risk factors to serve as prediction markers for critical illness of SARS-CoV-2 infection. METHODS: Fifty-two critical and 200 non-critical SARS-CoV-2 nucleic acid positive patients hospitalized in 15 hospitals outside Wuhan from January 19 to March 6, 2020 were enrolled in this study. Multivariable logistic regression and LASSO logistic regression were performed to identify independent risk factors for critical illness. RESULTS: Age older than 60 years, dyspnea, respiratory rate > 24 breaths per min, leukocytosis > 9.5 × 109/L, neutrophilia > 6.3 × 109/L, lymphopenia < 1.1 × 109/L, neutrophil-to-lymphocyte ratio > 3.53, fibrinogen > 4 g/L, d-dimer > 0.55 µg/mL, blood urea nitrogen > 7.1 mM, elevated aspartate transaminase, elevated alanine aminotransferase, total bilirubin > 21 µM, and Sequential Organ Failure Assessment (SOFA) score ≥ 2 were identified as risk factors for critical illness. LASSO logistic regression identified the best combination of risk factors as SOFA score, age, dyspnea, and leukocytosis. The Area Under the Receiver-Operator Curve values for the risk factors in predicting critical illness were 0.921 for SOFA score, 0.776 for age, 0.764 for dyspnea, 0.658 for leukocytosis, and 0.960 for the combination of the four risk factors. CONCLUSIONS: Our findings advocate the use of risk factors SOFA score ≥ 2, age > 60, dyspnea and leukocytosis > 9.5 × 109/L on admission, alone or in combination, to determine the optimal management of the patients and health care resources.


Subject(s)
Coronavirus Infections/epidemiology , Critical Illness/epidemiology , Pneumonia, Viral/epidemiology , Adult , Age Factors , Aged , Aged, 80 and over , Biomarkers/analysis , Blood Cell Count , COVID-19 , China/epidemiology , Cohort Studies , Comorbidity , Coronavirus Infections/blood , Coronavirus Infections/diagnostic imaging , Critical Care , Female , Hospital Mortality , Hospitalization , Humans , Male , Middle Aged , Pandemics , Pneumonia, Viral/blood , Pneumonia, Viral/diagnostic imaging , ROC Curve , Regression Analysis , Risk Factors , Severity of Illness Index , Treatment Outcome
SELECTION OF CITATIONS
SEARCH DETAIL
...