Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
BMC Plant Biol ; 24(1): 618, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38937693

ABSTRACT

In acidic soils, aluminum (Al) toxicity inhibits the growth and development of plant roots and affects nutrient and water absorption, leading to reduced yield and quality. Therefore, it is crucial to investigate and identify candidate genes for Al tolerance and elucidate their physiological and molecular mechanisms under Al stress. In this study, we identified a new gene OsAlR3 regulating Al tolerance, and analyzed its mechanism from physiological, transcriptional and metabolic levels. Compared with the WT, malondialdehyde (MDA) and hydrogen peroxide (H2O2) content were significantly increased, superoxide dismutase (SOD) activity and citric acid (CA) content were significantly decreased in the osalr3 mutant lines when exposed to Al stress. Under Al stress, the osalr3 exhibited decreased expression of antioxidant-related genes and lower organic acid content compared with WT. Integrated transcriptome and metabolome analysis showed the phenylpropanoid biosynthetic pathway plays an important role in OsAlR3-mediated Al tolerance. Exogenous CA and oxalic acid (OA) could increase total root length and enhance the antioxidant capacity in the mutant lines under Al stress. Conclusively, we found a new gene OsAlR3 that positively regulates Al tolerance by promoting the chelation of Al ions through the secretion of organic acids, and increasing the expression of antioxidant genes.


Subject(s)
Aluminum , Antioxidants , Gene Expression Regulation, Plant , Oryza , Aluminum/toxicity , Oryza/genetics , Oryza/metabolism , Oryza/drug effects , Oryza/physiology , Antioxidants/metabolism , Gene Expression Regulation, Plant/drug effects , Plant Proteins/genetics , Plant Proteins/metabolism , Citric Acid/metabolism , Plant Roots/genetics , Plant Roots/drug effects , Plant Roots/metabolism , Genes, Plant
2.
Front Genet ; 13: 1063984, 2022.
Article in English | MEDLINE | ID: mdl-36704350

ABSTRACT

The prevalence of soluble aluminum (Al) ions is one of the major limitations to crop production worldwide on acid soils. Therefore, understanding the Al tolerance mechanism of rice and applying Al tolerance functional genes in sensitive plants can significantly improve Al stress resistance. In this study, transcriptomics and metabolomics analyses were performed to reveal the mechanism of Al tolerance differences between two rice landraces (Al-tolerant genotype Shibanzhan (KR) and Al-sensitive genotype Hekedanuo (MR) with different Al tolerance. The results showed that DEG related to phenylpropanoid biosynthesis was highly enriched in KR and MR after Al stress, indicating that phenylpropanoid biosynthesis may be closely related to Al tolerance. E1.11.1.7 (peroxidase) was the most significant enzyme of phenylpropanoid biosynthesis in KR and MR under Al stress and is regulated by multiple genes. We further identified that two candidate genes Os02g0770800 and Os06g0521900 may be involved in the regulation of Al tolerance in rice. Our results not only reveal the resistance mechanism of rice to Al stress to some extent, but also provide a useful reference for the molecular mechanism of different effects of Al poisoning on plants.

SELECTION OF CITATIONS
SEARCH DETAIL
...