Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Reprod Toxicol ; 1232024 Jan.
Article in English | MEDLINE | ID: mdl-38706688

ABSTRACT

Exposure to gestational diabetes mellitus (GDM) during pregnancy has significant consequences for the unborn baby and newborn infant. However, whether and how GDM exposure induces the development of neonatal brain hypoxia/ischemia-sensitive phenotype and the underlying molecular mechanisms remain unclear. In this study, we used a late GDM rat model induced by administration of streptozotocin (STZ) on gestational day 12 and investigated its effects of GDM on neonatal brain development. The pregnant rats exhibited increased blood glucose levels in a dose-dependent manner after STZ administration. STZ-induced maternal hyperglycemia led to reduced blood glucose levels in neonatal offspring, resulting in growth restriction and an increased brain to body weight ratio. Importantly, GDM exposure increased susceptibility to hypoxia/ischemia (HI)-induced brain infarct sizes compared to the controls in both male and female neonatal offspring. Further molecular analysis revealed alterations in the PTEN/AKT/mTOR/autophagy signaling pathway in neonatal male offspring brains, along with increased ROS production and autophagy-related proteins (Atg5 and LC3-II). Treatment with the PTEN inhibitor bisperoxovanadate (BPV) eliminated the differences in HI-induced brain infarct sizes between the GDM-exposed and the control groups. These findings provide novel evidence of the development of a brain hypoxia/ischemia-sensitive phenotype in response to GDM exposure and highlight the role of the PTEN/AKT/mTOR/autophagy signaling pathway in this process.


Subject(s)
Autophagy , Brain , Diabetes, Gestational , Hypoxia-Ischemia, Brain , Signal Transduction , Streptozocin , Animals , Female , Male , Pregnancy , Rats , Animals, Newborn , Autophagy/drug effects , Blood Glucose , Brain/metabolism , Brain/drug effects , Brain/pathology , Diabetes, Gestational/chemically induced , Diabetes, Gestational/metabolism , Hypoxia-Ischemia, Brain/metabolism , Prenatal Exposure Delayed Effects , Proto-Oncogene Proteins c-akt/metabolism , PTEN Phosphohydrolase/metabolism , Rats, Sprague-Dawley , Signal Transduction/drug effects , TOR Serine-Threonine Kinases/metabolism
2.
Front Cell Dev Biol ; 12: 1383232, 2024.
Article in English | MEDLINE | ID: mdl-38586304

ABSTRACT

Studies have shown that bortezomib resistance in multiple myeloma (MM) is mediated by the abnormalities of various molecules and microenvironments. Exploring these resistance mechanisms will improve the therapeutic efficacy of bortezomib. In this study, bone marrow tissues from three patients with MM, both sensitive and resistant to bortezomib, were collected for circRNA high-throughput sequencing analysis. The relationship between circ_0000337, miR-98-5p, and target gene DNA2 was analyzed by luciferase detection and verified by RT-qPCR. We first found that circ_0000337 was significantly upregulated in bortezomib-resistant MM tissues and cells, and overexpression of circ_0000337 could promote bortezomib resistance in MM cells. circ_0000337 may act as a miR-98-5p sponge to upregulate DNA2 expression, regulate DNA damage repair, and induce bortezomib resistance. Furthermore, it was determined that the increased circ_0000337 level in bortezomib-resistant cells was due to an increased N6-methyladenosine (m6A) level, resulting in enhanced RNA stability. In conclusion, the m6A level of circ_0000337 and its regulation may be a new and potential therapeutic target for overcoming bortezomib resistance in MM.

3.
Discov Oncol ; 15(1): 89, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38538885

ABSTRACT

BACKGROUND/AIM: Lenvatinib, a multikinase inhibitor, has become a second-line treatment option for unresectable liver cancer, while its monotherapy response rate is limited. Hence, we aim to investigate whether one of the epigenetic inhibitors will be synthetic lethal with Lenvatinib in liver cancer cells. MATERIALS AND METHODS: We performed high-throughput drug screening in combination with Lenvatinib. And we employed CCK-8-based Bliss Synergy Score analysis, colony formation and western blotting to confirm our screening results in both HepG2 and HCCC9810 cells. RESULTS: We identified that LSD1 inhibitor Pulrodemstat in combination with Lenvatinib dramatically suppressed the PI3K-AKT signaling and induced a more significant activation of Caspase3 compared to Lenvatinib monotherapy. CONCLUSION: Pulrodemstat synergized with Lenvatinib based on suppression of PI3K-AKT signaling and activation of apoptotic signaling.

4.
Front Microbiol ; 15: 1257405, 2024.
Article in English | MEDLINE | ID: mdl-38298896

ABSTRACT

Background: Recent research linked changes in the gut microbiota and serum metabolite concentrations to intracerebral hemorrhage (ICH). However, the potential causal relationship remained unclear. Therefore, the current study aims to estimate the effects of genetically predicted causality between gut microbiota, serum metabolites, and ICH. Methods: Summary data from genome-wide association studies (GWAS) of gut microbiota, serum metabolites, and ICH were obtained separately. Gut microbiota GWAS (N = 18,340) were acquired from the MiBioGen study, serum metabolites GWAS (N = 7,824) from the TwinsUK and KORA studies, and GWAS summary-level data for ICH from the FinnGen R9 (ICH, 3,749 cases; 339,914 controls). A two-sample Mendelian randomization (MR) study was conducted to explore the causal effects between gut microbiota, serum metabolites, and ICH. The random-effects inverse variance-weighted (IVW) MR analyses were performed as the primary results, together with a series of sensitivity analyses to assess the robustness of the results. Besides, a reverse MR was conducted to evaluate the possibility of reverse causation. To validate the relevant findings, we further selected data from the UK Biobank for analysis. Results: MR analysis results revealed a nominal association (p < 0.05) between 17 gut microbial taxa, 31 serum metabolites, and ICH. Among gut microbiota, the higher level of genus Eubacterium xylanophilum (odds ratio (OR): 1.327, 95% confidence interval (CI):1.154-1.526; Bonferroni-corrected p = 7.28 × 10-5) retained a strong causal relationship with a higher risk of ICH after the Bonferroni corrected test. Concurrently, the genus Senegalimassilia (OR: 0.843, 95% CI: 0.778-0.915; Bonferroni-corrected p = 4.10 × 10-5) was associated with lower ICH risk. Moreover, after Bonferroni correction, only two serum metabolites remained out of the initial 31 serum metabolites. One of the serum metabolites, Isovalerate (OR: 7.130, 95% CI: 2.648-19.199; Bonferroni-corrected p = 1.01 × 10-4) showed a very strong causal relationship with a higher risk of ICH, whereas the other metabolite was unidentified and excluded from further analysis. Various sensitivity analyses yielded similar results, with no heterogeneity or directional pleiotropy observed. Conclusion: This two-sample MR study revealed the significant influence of gut microbiota and serum metabolites on the risk of ICH. The specific bacterial taxa and metabolites engaged in ICH development were identified. Further research is required in the future to delve deeper into the mechanisms behind these findings.

5.
PLoS One ; 19(2): e0298348, 2024.
Article in English | MEDLINE | ID: mdl-38363740

ABSTRACT

With the continuous advancement of technology, automated vehicle technology is progressively maturing. It is crucial to comprehend the factors influencing individuals' intention to utilize automated vehicles. This study examined user willingness to adopt automated vehicles. By incorporating age and educational background as random parameters, an ordered Probit model with random parameters was constructed to analyze the influential factors affecting respondents' adoption of automated vehicles. We devised and conducted an online questionnaire survey, yielding 2105 valid questionnaires. The findings reveal significant positive correlations between positive social trust, perceived ease of use, perceived usefulness, low levels of perceived risk, and the acceptance of automated vehicles. Additionally, our study identifies extraversion and openness as strong mediators in shaping individuals' intentions to use automated vehicles. Furthermore, prior experience with assisted driving negatively impacts people's inclination toward embracing automated vehicles. Our research also provides insights for promoting the adoption of automated vehicles: favorable media coverage and a reasonable division of responsibilities can enhance individuals' intentions to adopt this technology.


Subject(s)
Autonomous Vehicles , Intention , Humans , Technology , Travel , China
6.
Hypertension ; 81(2): 240-251, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37795601

ABSTRACT

BACKGROUND: Cigarette smoking/nicotine exposure in pregnancy shows an increased risk of hypertension in offspring, but the mechanisms are unclear. This study tested the hypothesis that m6A RNA hypomethylation epigenetically regulates vascular NOX (NADPH oxidase) and reactive oxygen species production, contributing to the fetal programming of a hypertensive phenotype in nicotine-exposed offspring. METHODS: Pregnant rats were exposed to episodic chronic intermittent nicotine aerosol (CINA) or saline aerosol control from gestational day 4 to day 21, and experiments were performed in 6-month-old adult offspring. RESULTS: Antenatal CINA exposure augmented Ang II (angiotensin II)-stimulated blood pressure response in male, but not female offspring. Moreover, CINA increased vascular NOX2 expression and superoxide production exclusively in male offspring. Inhibition of NOX2 with gp91ds-tat, both ex vivo and in vivo, mitigated the CINA-induced elevation in superoxide production and blood pressure response. Notably, CINA enhanced the expression of vascular m6A demethylase FTO (fat mass and obesity-associated protein), while reducing the total vascular m6A abundance and specific m6A methylation of the NOX2 gene. Additionally, ex vivo inhibition of FTO with FB23-2 attenuated CINA-induced increases in vascular NOX2 expression. In vitro experiments using human umbilical vein endothelial cells demonstrated that nicotine dose-dependently upregulated FTO and NOX2 protein abundance, which were reversed by treatment with the FTO inhibitor FB23-2 or FTO knockdown using siRNAs. CONCLUSIONS: This study uncovers a new mechanism: m6A demethylase FTO-mediated epigenetic upregulation of vascular NOX2 signaling in CINA-induced hypertensive phenotype. This insight could lead to a therapeutic target for preventing and treating developmental hypertension programming.


Subject(s)
Hypertension , Nicotine , Pregnancy , Rats , Male , Female , Animals , Humans , Infant , Nicotine/pharmacology , Blood Pressure , Reactive Oxygen Species/metabolism , Superoxides , Endothelial Cells/metabolism , NADPH Oxidases/genetics , NADPH Oxidases/metabolism , Aerosols/adverse effects , Alpha-Ketoglutarate-Dependent Dioxygenase FTO
7.
Comput Biol Med ; 169: 107881, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38159401

ABSTRACT

Fundus tessellation (FT) is a prevalent clinical feature associated with myopia and has implications in the development of myopic maculopathy, which causes irreversible visual impairment. Accurate classification of FT in color fundus photo can help predict the disease progression and prognosis. However, the lack of precise detection and classification tools has created an unmet medical need, underscoring the importance of exploring the clinical utility of FT. Thus, to address this gap, we introduce an automatic FT grading system (called DeepGraFT) using classification-and-segmentation co-decision models by deep learning. ConvNeXt, utilizing transfer learning from pretrained ImageNet weights, was employed for the classification algorithm, aligning with a region of interest based on the ETDRS grading system to boost performance. A segmentation model was developed to detect FT exits, complementing the classification for improved grading accuracy. The training set of DeepGraFT was from our in-house cohort (MAGIC), and the validation sets consisted of the rest part of in-house cohort and an independent public cohort (UK Biobank). DeepGraFT demonstrated a high performance in the training stage and achieved an impressive accuracy in validation phase (in-house cohort: 86.85 %; public cohort: 81.50 %). Furthermore, our findings demonstrated that DeepGraFT surpasses machine learning-based classification models in FT classification, achieving a 5.57 % increase in accuracy. Ablation analysis revealed that the introduced modules significantly enhanced classification effectiveness and elevated accuracy from 79.85 % to 86.85 %. Further analysis using the results provided by DeepGraFT unveiled a significant negative association between FT and spherical equivalent (SE) in the UK Biobank cohort. In conclusion, DeepGraFT accentuates potential benefits of the deep learning model in automating the grading of FT and allows for potential utility as a clinical-decision support tool for predicting progression of pathological myopia.


Subject(s)
Deep Learning , Humans , Semantics , Fundus Oculi , Machine Learning , Algorithms
8.
ACS Appl Mater Interfaces ; 15(39): 46010-46021, 2023 Oct 04.
Article in English | MEDLINE | ID: mdl-37737705

ABSTRACT

Ceramic fiber aerogels are attractive thermal insulating materials. In a thermomechanical coupling environment, however, they often show limited mechanical strength and considerably increased heat transfer which can lead to thermal runaway. In this paper, inspired by bird's nest and nacre, we demonstrate a sample strategy combining fiber sedimentation and layer-by-layer assembly to fabricate ultrastrong mullite fiber aerogels (MFAs) with quasi-ordered structures. The fibrous layers and fiber bridges are constructed in a fiber sedimentation self-assembly process. The fiber sedimentation technique optimizes the structure of the MFAs by regulating the fiber orientation. Owing to the quasi-ordered structure, the fabricated MFAs exhibit the integrated properties of high compression fatigue resistance, temperature-invariant compression resilience from -196 to 1300 °C, and low thermal conductivity (0.034 W·m-1·K-1). By deliberately pressing multilayer MFAs into a thin paper, we substantially enhance the load-bearing capacity of the MFAs and achieve large temperature differences (563 °C) between the cold and hot surfaces by using a thin layer of MFAs (3-5 mm) under the simulated high-temperature (685 °C) and high-pressure (0.9 MPa) environment test. The combination of compression resistance, mechanical flexibility, and excellent thermal insulation provides an appealing material for efficient thermal insulation in extreme environments.

9.
Chem Soc Rev ; 52(21): 7389-7460, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-37743823

ABSTRACT

Photothermal regulation concerning solar harvesting and repelling has recently attracted significant interest due to the fast-growing research focus in the areas of solar heating for evaporation, photocatalysis, motion, and electricity generation, as well as passive cooling for cooling textiles and smart buildings. The parallel development of photothermal regulation strategies through both material and system designs has further improved the overall solar utilization efficiency for heating/cooling. In this review, we will review the latest progress in photothermal regulation, including solar heating and passive cooling, and their manipulating strategies. The underlying mechanisms and criteria of highly efficient photothermal regulation in terms of optical absorption/reflection, thermal conversion, transfer, and emission properties corresponding to the extensive catalog of nanostructured materials are discussed. The rational material and structural designs with spectral selectivity for improving the photothermal regulation performance are then highlighted. We finally present the recent significant developments of applications of photothermal regulation in clean energy and environmental areas and give a brief perspective on the current challenges and future development of controlled solar energy utilization.

10.
Int J Pharm ; 643: 123241, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37479101

ABSTRACT

Multiple myeloma (MM) is a malignant and incurable disease. Chemotherapy is currently the primary treatment option for MM. However, chemotherapeutic drugs can interrupt treatment because of serious side effects. Therefore, development of novel therapeutics for MM is essential. In this study, we designed and constructed an innovative nanoparticle-based drug delivery system, P-R@Ni3P-BTZ, and investigated its feasibility, effectiveness, and safety both in vitro and in vivo. P-R@Ni3P-BTZ is a nanocomposite that consists of two parts: (1) the drug carrier (Ni3P), which integrates photothermal therapy (PTT) with chemotherapy by loading bortezomib (BTZ); and (2) the shell (P-R), a CD38 targeting peptide P-modified red blood cell membrane nanovesicles. In vitro and in vivo, it was proven that P-R@Ni3P-BTZ exhibits remarkable antitumor effects by actively targeting CD38 + MM cells. P-R@Ni3P-BTZ significantly induces the accumulation of intracellular reactive oxygen species (ROS) and increases the apoptosis of MM cells, which underlies the primary mechanism of its antitumor effects. In addition, P-R@Ni3P exhibits good biocompatibility and biosafety, both in vitro and in vivo. Overall, P-R@Ni3P-BTZ is a specific and efficient MM therapeutic method.


Subject(s)
Antineoplastic Agents , Multiple Myeloma , Nanoparticles , Humans , Apoptosis , Bortezomib , Cell Line, Tumor , Erythrocyte Membrane/metabolism , Erythrocyte Membrane/pathology , Multiple Myeloma/drug therapy , Multiple Myeloma/metabolism , Nanoparticles/administration & dosage
11.
Mol Genet Genomics ; 298(5): 1059-1071, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37277661

ABSTRACT

High myopia (HM), which is characterized by oxidative stress, is one of the leading causes of visual impairment and blindness across the world. Family and population genetic studies have uncovered nuclear-genome variants in proteins functioned in the mitochondria. However, whether mitochondrial DNA mutations are involved in HM remains unexplored. Here, we performed the first large-scale whole-mitochondrial genome study in 9613 HM cases and 9606 control subjects of Han Chinese ancestry for identifying HM-associated mitochondrial variants. The single-variant association analysis identified nine novel genetic variants associated with HM reaching the entire mitochondrial wide significance level, including rs370378529 in ND2 with an odds ratio (OR) of 5.25. Interestingly, eight out of nine variants were predominantly located in related sub-haplogroups, i.e. m.5261G > A in B4b1c, m.12280A > G in G2a4, m.7912G > A in D4a3b, m.94G > A in D4e1, m.14857 T > C in D4e3, m.14280A > G in D5a2, m.16272A > G in G2a4, m.8718A > G in M71 and F1a3, indicating that the sub-haplogroup background can increase the susceptible risk for high myopia. The polygenic risk score analysis of the target and validation cohorts indicated a high accuracy for predicting HM with mtDNA variants (AUC = 0.641). Cumulatively, our findings highlight the critical roles of mitochondrial variants in untangling the genetic etiology of HM.


Subject(s)
East Asian People , Myopia , Humans , DNA, Mitochondrial/genetics , Haplotypes/genetics , Mitochondria/genetics , Mutation , Myopia/genetics
12.
Chemosphere ; 312(Pt 1): 137013, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36397302

ABSTRACT

Biofilms drive crucial ecosystem processes in rivers. This study provided the basis for overall quantitative calculations about the contribution of biofilms to the nitrogen cycle. At the early stage of biofilm formation, dissolved oxygen (DO) could penetrate the biofilms. As the biofilm grew and the thickness increased, then the mass transfer of DO was restricted. The microaerobic layer firstly appeared in biofilm under the turbulent flow conditions, with the appearance of the microaerobic and anaerobic layer, the nitrification and denitrification reaction could proceed smoothly in biofilm. And the removal efficiency of total nitrogen (TN) increased as the biofilm matured. Under the turbulent flow conditions, mature biofilms had the smallest thickness, but the highest proportion the anaerobic layer to the biofilm thickness, the highest density, and the highest nitrogen removal efficiency. However, the nitrogen removal efficiency of biofilm was the lowest under laminar flow conditions. The difference of layered structure of biofilm and the DO flux in biofilm explained the difference of nitrogen migration and transformation in river water under different hydrodynamic conditions. This study would help control the growth of biofilm and improve the nitrogen removal capacity of biofilm by regulating hydrodynamic conditions.


Subject(s)
Denitrification , Nitrogen , Nitrogen/chemistry , Waste Disposal, Fluid , Bioreactors , Oxygen , Hydrodynamics , Rivers , Ecosystem , Nitrification , Biofilms , Water , Wastewater
13.
Front Endocrinol (Lausanne) ; 13: 1000739, 2022.
Article in English | MEDLINE | ID: mdl-36176469

ABSTRACT

Epidemic obesity is contributing to increases in the prevalence of obesity-related metabolic diseases and has, therefore, become an important public health problem. Adipose tissue is a vital energy storage organ that regulates whole-body energy metabolism. Triglyceride degradation in adipocytes is called lipolysis. It is closely tied to obesity and the metabolic disorders associated with it. Various natural products such as flavonoids, alkaloids, and terpenoids regulate lipolysis and can promote weight loss or improve obesity-related metabolic conditions. It is important to identify the specific secondary metabolites that are most effective at reducing weight and the health risks associated with obesity and lipolysis regulation. The aims of this review were to identify, categorize, and clarify the modes of action of a wide diversity of plant secondary metabolites that have demonstrated prophylactic and therapeutic efficacy against obesity by regulating lipolysis. The present review explores the regulatory mechanisms of lipolysis and summarizes the effects and modes of action of various natural products on this process. We propose that the discovery and development of natural product-based lipolysis regulators could diminish the risks associated with obesity and certain metabolic conditions.


Subject(s)
Biological Products , Metabolic Diseases , Biological Products/pharmacology , Biological Products/therapeutic use , Flavonoids , Humans , Lipolysis , Metabolic Diseases/drug therapy , Obesity/drug therapy , Obesity/metabolism , Terpenes/therapeutic use , Triglycerides/metabolism
14.
J Pharm Biomed Anal ; 207: 114422, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34688201

ABSTRACT

Morinda officinalis, a well-known traditional herbal medicine in China, is used to treat deficiency of kidney-yang syndrome. Although this medicine has the property of "reinforcing kidney to strengthening Yang," the chemical constituents responsible for this effect remain to be elucidated. Here, we aimed to identify the main active compounds responsible for reinforcing kidney to strengthening Yang, based on spectrum-effect relationships combined with chemometrics. We used the UPLC-diode array detection method to establish the chromatography fingerprint of M. officinalis. Hydrocortisone-induced and adenine-induced kidney-yang deficiency patterns were established to evaluate the efficacy of M. officinalis. Serum triiodothyronine, free thyroxine, thyrotropin, testosterone, cortisol, luteinizing hormone, follicle-stimulating hormone, corticotropin-releasing hormone, and adrenocorticotropic hormone levels were determined as pharmacodynamic indices. Analytic hierarchy process was used to determine the weight of each index to the total pharmacodynamic contribution. Lastly, the spectrum-effect between the fingerprint and the pharmacological effects were established using grey relational analysis and partial least squares. Our findings indicated that peaks 1, 2, 3, 5, 6, 7, 8, 9, 11, 13, 15, 17, and 20 might represent the main components that positively correlated to the total effect, of which four were identified by comparison with reference standards. The identified components were monotropein (peak 1), deacetyl asperulosidic acid (peak 3), asperulosidic acid (peak 8), and asperuloside (peak 9). Our results suggest that the "reinforce kidney to strengthening Yang" effects were attributable to the combined effects of the multiple chemical components of M. officinalis and provide a valuable method to identify the active "reinforce kidney to strengthening Yang" components of M. officinalis and establish the quality control of M. officinalis.


Subject(s)
Drugs, Chinese Herbal , Morinda , Drugs, Chinese Herbal/therapeutic use , Kidney , Phytotherapy , Yang Deficiency/drug therapy
15.
JACC Basic Transl Sci ; 7(12): 1183-1196, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36644285

ABSTRACT

The mitochondrial dysfunction characteristic of heart failure (HF) is associated with changes in intracellular nicotinamide adenine dinucleotide (NAD+) and NADH levels. Raising NAD+ levels with the NAD+ precursor, nicotinamide riboside (NR), may represent a novel HF treatment. In this 30-participant trial of patients with clinically stable HF with reduced ejection fraction, NR, at a dose of 1,000 mg twice daily, appeared to be safe and well tolerated, and approximately doubled whole blood NAD+ levels. Intraindividual NAD+ increases in response to NR correlated with increases in peripheral blood mononuclear cell basal (R 2 = 0.413, P = 0.003) and maximal (R 2 = 0.434, P = 0.002) respiration, and with decreased NLRP3 expression (R 2 = 0.330, P = 0.020). (Nicotinamide Riboside in Systolic Heart Failure; NCT03423342).

16.
Front Med (Lausanne) ; 8: 733724, 2021.
Article in English | MEDLINE | ID: mdl-34901055

ABSTRACT

Background: Randomized controlled trials (RCTs) evaluating the influence of personal protective equipment (PPE) on quality of chest compressions during cardiopulmonary resuscitation (CPR) showed inconsistent results. Accordingly, a meta-analysis was performed to provide an overview. Methods: Relevant studies were obtained by search of Medline, Embase, and Cochrane's Library databases. A random-effect model incorporating the potential heterogeneity was used to pool the results. Results: Six simulation-based RCTs were included. Overall, pooled results showed that there was no statistically significant difference between the rate [mean difference (MD): -1.70 time/min, 95% confidence interval (CI): -5.77 to 2.36, P = 0.41, I 2 = 80%] or the depth [MD: -1.84 mm, 95% CI: -3.93 to 0.24, P = 0.11, I 2 = 73%] of chest compressions performed by medical personnel with and without PPE. Subgroup analyses showed that use of PPE was associated with reduced rate of chest compressions in studies before COVID-19 (MD: -7.02 time/min, 95% CI: -10.46 to -3.57, P < 0.001), but not in studies after COVID-19 (MD: 0.14 time/min, 95% CI: -5.77 to 2.36, P = 0.95). In addition, PPE was not associated with significantly reduced depth of chest compressions in studies before (MD: -3.34 mm, 95% CI: -10.29 to -3.62, P = 0.35) or after (MD: -0.97 mm, 95% CI: -2.62 to 0.68, P = 0.25) COVID-19. No significant difference was found between parallel-group and crossover RCTs (P for subgroup difference both > 0.05). Conclusions: Evidence from simulation-based RCTs showed that use of PPE was not associated with reduced rate or depth of chest compressions in CPR.

17.
Article in English | MEDLINE | ID: mdl-34824594

ABSTRACT

BACKGROUND: Traditional Chinese medicine Smilax is the rhizome of liliaceous plant Smilax china L., which is used to treat pelvic inflammatory disease and anxieties. PURPOSE: To investigate the mechanism of anti-inflammatory activity of the extract from Smilax china L. (ES). METHODS: The components of ES were identified by UPLC-QTOF-MS/MS. The anti-inflammatory activities were evaluated in xylene-induced ear oedema and egg white-induced plantar swelling test. Cell viability was examined by CCK-8 assay. The inflammatory mediators, proinflammatory cytokines, and MAPK and NF-κB signals in LPS-stimulated THP-1 cells were determined using ELISA, real-time PCR, and Western blot, respectively. RESULTS: 20 compounds of ES were confirmed by comparing with the reference substance. ES displayed more prominent anti-inflammatory activity than the positive control "Jin Gang Teng" capsule in the in vivo acute inflammatory model. ES suppressed the expression of PGE2 and 6-Keot-PGF1 α, and the ratio of IC50 (COX-1)/IC50 (COX-2) of ES was 3.15, which indicated that ES could selectively inhibit COX-2. ES dose-dependently (12.5, 25, and 50 mg/L) decreased the production and mRNA levels of proinflammatory cytokines IL-1ß, IL-6, and TNF-α. Furthermore, ES significantly decreased LPS-induced phosphorylation of p38, JNK, ERK1/2, and p65, inhibiting the expression of IKKα and the degradation of IκBα. CONCLUSION: The results suggested that ES could selectively inhibit the activity of COX-2, and the anti-inflammatory effect of ES was associated with the inhibition of IL-1ß, IL-6, and TNF-α via negative regulation of MAPK and NF-κB signaling pathways in LPS-induced THP-1 cells.

18.
J Youth Adolesc ; 49(10): 2090-2108, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32445038

ABSTRACT

Increasing evidence has supported the dual-factor model of mental health which propose that both negative (i.e., psychological symptoms) and positive (e.g., well-being) indicators should be included in comprehensive assessments of youth's mental health. However, the nature of the profiles and transitions of dual-factor mental health and their predictors remain unclear during early adolescence, thus precluding a meaningful understanding of the development in comprehensive mental health status. This study included measures of negative (i.e., depressive symptoms and anxiety symptoms) as well as positive (i.e., life satisfaction and self-esteem) mental health to identify heterogeneous profiles, transition patterns, and key school-related predictors of dual-factor mental health statuses among Chinese early adolescents. A total of 1009 participants with a range of 10 to 15 years old (Mage = 12.97, SD = 0.67, 50.7% female) completed assessments on three occasions, every six months. The results revealed three distinctive groups: Flourishing youth (i.e., low depressive and anxiety symptoms, high self-esteem and life satisfaction), Vulnerable youth (i.e., low depressive and anxiety symptoms, low self-esteem and life satisfaction), and Troubled youth (i.e., high depressive and anxiety symptoms, low self-esteem and life satisfaction). The findings also indicated differential stability and unique transition patterns among the three groups. The results also revealed that higher levels of autonomy, relatedness and competence need satisfaction in school operated as protective factors whereas higher levels of academic and peer relationship stress operated as risk factors for the profiles and transition patterns. The identification of three groups with unique transition patterns highlights the importance of subgroup differences and possible cultural considerations in understanding the progression of mental health and the need for universally screening and dynamically monitor changes in youth's dual-factor mental health to develop more sophisticated intervention programs tailored to the unique characteristics of the relevant groups. Furthermore, the identification of important school-related predictors of mental health, specifically experiences surrounding the satisfaction of psychological needs in school (especially relatedness needs) and school stress (especially peer relationship stress), should inform prevention and intervention programs.


Subject(s)
Mental Health , Personal Satisfaction , Adolescent , Anxiety , Child , Female , Humans , Male , Schools , Self Concept
19.
Front Oncol ; 9: 1261, 2019.
Article in English | MEDLINE | ID: mdl-31803627

ABSTRACT

Purpose: Circular RNA (circRNA) is a key regulatory factor in the development and progression of human tumors. However, the working mechanism and clinical significance of most circRNAs remain unknown in human cancers, including multiple myeloma (MM). Patients and Methods: This study employs high-throughput circRNA microarray with bioinformatics to identify differentially expressed circRNAs in patients with MM. The hsa_circ_0007841 expressions were observed in the MM tissues of 86 patients. Drug-resistant cell lines and pathological features were also detected. In addition, the relationship between hsa_circ_0007841 expressions in the MM tissues and the pathological features of patients with MM were evaluated and role of hsa_circ_0007841 as a potential biomarker and therapeutic target was assessed. Results: The results show that in the MM cell lines and drug-resistant cell lines, hsa_circ_0007841 expression was significantly upregulated, which was closely associated with disease prognosis. Specifically, hsa_circ_0007841 upregulation was correlated with chromosomal aberrations such as gain 1q21, t (4:14) and mutations in ATR and IRF4 genes. This finding was corroborated in large samples. Finally, bioinformatics analysis showed that eight differentially expressed miRNAs and 10 candidate mRNAs interacted with hsa_circ_0007841, shedding some new light on the basic functional research. Conclusion: This study may be the first to report that hsa_circ_0007841 is significantly upregulated in MM. It also suggests that hsa_circ_0007841 may be a novel biomarker for MM and its involvement in the progression of MM.

20.
Zhongguo Zhong Yao Za Zhi ; 44(15): 3323-3329, 2019 Aug.
Article in Chinese | MEDLINE | ID: mdl-31602890

ABSTRACT

To study the correlation between ultra high performance liquid chromatography( UPLC) fingerprint of Smilax china and its anti-pelvic inflammatory effect,and to explore the pharmacodynamic material basis of S. china against pelvic inflammatory disease.UPLC fingerprints of 10 batches of S. china from different habitats were established,and the values of SOD,MDA,TNF-α,and IL-6 in rats with pelvic inflammation were measured. The weight of each single pharmacodynamics index to the total efficacy was determined by analytic hierarchy process,and the contribution of each peak in fingerprints to the each single pharmacodynamics index and total efficacy was analyzed by the grey relational analysis. Then the structures of chemical constituents at the identified peaks were confirmed by comparing with the reference substance. The 27 common characteristic peaks of UPLC fingerprints were all related to the anti-pelvic inflammation effect of S. china,of which 13 peaks were identified as peak 2( 3,5-dihydroxy-2-methylbenzoic acid-3-O-glucoside),peak 3( chlorogenic acid),peak 5( 2,7,4-trihydroxydihydroflavone-5-O-glucoside),peak 6( 7,4-dihydroxydihydroflavonol-5-O-glucoside),peak 7( taxifolin-7-O-glucoside),peak 9( taxifolin),peak 10( polydatin),peak 11( oxyresveratrol),peak 12( astilbin),peak15( resveratrol),peak 16( quercitrin),peak 18( engeletin) and peak 24( kaempferol). The correlation degree of 21 peaks and the total efficacy was greater than 0. 8,and the top 10 ranked by correlation degree were as follows: peak 1,3,7,19,18,17,4,11,16,and 21. The results showed that the anti-pelvic inflammation effect of S. china was achieved by the combined action of pharmacodynamic substances. In order to control the quality of S. china and its prepared slices more effectively,the index components of content detection should be selected reasonably.


Subject(s)
Pelvic Inflammatory Disease/drug therapy , Plant Extracts/pharmacology , Smilax/chemistry , Animals , China , Chromatography, High Pressure Liquid , Female , Phytochemicals/pharmacology , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...