Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Biosensors (Basel) ; 14(7)2024 Jul 22.
Article in English | MEDLINE | ID: mdl-39056633

ABSTRACT

A coenzyme A (CoA-SH)-responsive dual electrochemical and fluorescence-based sensor was designed utilizing an MnO2-immobilized-polymer-dot (MnO2@D-PD)-coated electrode for the sensitive detection of osteoarthritis (OA) in a peroxisomal ß-oxidation knockout model. The CoA-SH-responsive MnO2@D-PD-coated electrode interacted sensitively with CoA-SH in OA chondrocytes, triggering electroconductivity and fluorescence changes due to cleavage of the MnO2 nanosheet on the electrode. The MnO2@D-PD-coated electrode can detect CoA-SH in immature articular chondrocyte primary cells, as indicated by the significant increase in resistance in the control medium (R24h = 2.17 MΩ). This sensor also sensitively monitored the increase in resistance in chondrocyte cells in the presence of acetyl-CoA inducers, such as phytol (Phy) and sodium acetate (SA), in the medium (R24h = 2.67, 3.08 MΩ, respectively), compared to that in the control medium, demonstrating the detection efficiency of the sensor towards the increase in the CoA-SH concentration. Furthermore, fluorescence recovery was observed owing to MnO2 cleavage, particularly in the Phy- and SA-supplemented media. The transcription levels of OA-related anabolic (Acan) and catabolic factors (Adamts5) in chondrocytes also confirmed the interaction between CoA-SH and the MnO2@D-PD-coated electrode. Additionally, electrode integration with a wireless sensing system provides inline monitoring via a smartphone, which can potentially be used for rapid and sensitive OA diagnosis.


Subject(s)
Biosensing Techniques , Electrodes , Manganese Compounds , Osteoarthritis , Polymers , Manganese Compounds/chemistry , Polymers/chemistry , Oxides/chemistry , Electrochemical Techniques , Oxidation-Reduction , Chondrocytes , Humans , Fluorescence , Peroxisomes/metabolism , Animals
2.
Gels ; 10(7)2024 Jul 10.
Article in English | MEDLINE | ID: mdl-39057474

ABSTRACT

An electrochemical sensor sensitive to coenzyme A (CoA) was designed using a CoA-responsive polyallylamine-manganese oxide-polymer dot nanogel coated on the electrode surface to detect various genetic models of osteoarthritis (OA). The CoA-responsive nanogel sensor responded to the abundance of CoA in OA, causing the breakage of MnO2 in the nanogel, thereby changing the electroconductivity and fluorescence of the sensor. The CoA-responsive nanogel sensor was capable of detecting CoA depending on the treatment time and distinguishing the response towards different OA genetic models that contained different levels of CoA (wild type/WT, NudT7 knockout/N7KO, and Acot12 knockout/A12KO). The WT, N7KO, and A12KO had distinct resistances, which further increased as the incubation time were changed from 12 h (R12h = 2.11, 2.40, and 2.68 MΩ, respectively) to 24 h (R24h = 2.27, 2.59, and 2.92 MΩ, respectively) compared to the sensor without treatment (Rcontrol = 1.63 MΩ). To simplify its application, the nanogel sensor was combined with a wireless monitoring device to allow the sensing data to be directly transmitted to a smartphone. Furthermore, OA-indicated anabolic (Acan) and catabolic (Adamts5) factor transcription levels in chondrocytes provided evidence regarding CoA and nanogel interactions. Thus, this sensor offers potential usage in simple and sensitive OA diagnostics.

3.
Exp Mol Med ; 54(8): 1086-1097, 2022 08.
Article in English | MEDLINE | ID: mdl-35918533

ABSTRACT

Src family kinases (SFKs) have been implicated in the pathogenesis of kidney fibrosis. However, the specific mechanism by which SFKs contribute to the progression of diabetic kidney disease (DKD) remains unclear. Our preliminary transcriptome analysis suggested that SFK expression was increased in diabetic kidneys and that the expression of Fyn (a member of the SFKs), along with genes related to unfolded protein responses from the endoplasmic reticulum (ER) stress signaling pathway, was upregulated in the tubules of human diabetic kidneys. Thus, we examined whether SFK-induced ER stress is associated with DKD progression. Mouse proximal tubular (mProx24) cells were transfected with Fyn or Lyn siRNA and exposed to high glucose and palmitate (HG-Pal). Streptozotocin-induced diabetic rats were treated with KF-1607, a novel pan-Src kinase inhibitor (SKI) with low toxicity. The effect of KF-1607 was compared to that of losartan, a standard treatment for patients with DKD. Among the SFK family members, the Fyn and Lyn kinases were upregulated under diabetic stress. HG-Pal induced p70S6 kinase and JNK/CHOP signaling and promoted tubular injury. Fyn knockdown but not Lyn knockdown inhibited this detrimental signaling pathway. In addition, diabetic rats treated with KF-1607 showed improved kidney function and decreased ER stress, inflammation, and fibrosis compared with those treated with losartan. Collectively, these findings indicate that Fyn kinase is a specific member of the SFKs implicated in ER stress activation leading to proximal tubular injury in the diabetic milieu and that pan-SKI treatment attenuates kidney injury in diabetic rats. These data highlight Fyn kinase as a viable target for the development of therapeutic agents for DKD.


Subject(s)
Diabetes Mellitus, Experimental , Diabetic Nephropathies , Animals , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Diabetes Mellitus, Experimental/pathology , Diabetic Nephropathies/drug therapy , Diabetic Nephropathies/pathology , Endoplasmic Reticulum Stress , Fibrosis , Humans , Kidney/pathology , Losartan , Mice , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-fyn/genetics , Proto-Oncogene Proteins c-fyn/metabolism , Rats , src-Family Kinases/metabolism
4.
Diabetes Metab J ; 46(6): 829-842, 2022 11.
Article in English | MEDLINE | ID: mdl-35746892

ABSTRACT

BACKGROUND: Non-alcoholic fatty liver disease (NAFLD) has been increasing in association with the epidemic of obesity and diabetes. Peroxisomes are single membrane-enclosed organelles that play a role in the metabolism of lipid and reactive oxygen species. The present study examined the role of peroxisomes in high-fat diet (HFD)-induced NAFLD using fenofibrate, a peroxisome proliferator-activated receptor α (PPARα) agonist. METHODS: Eight-week-old male C57BL/6J mice were fed either a normal diet or HFD for 12 weeks, and fenofibrate (50 mg/kg/day) was orally administered along with the initiation of HFD. RESULTS: HFD-induced liver injury as measured by increased alanine aminotransferase, inflammation, oxidative stress, and lipid accumulation was effectively prevented by fenofibrate. Fenofibrate significantly increased the expression of peroxisomal genes and proteins involved in peroxisomal biogenesis and function. HFD-induced attenuation of peroxisomal fatty acid oxidation was also significantly restored by fenofibrate, demonstrating the functional significance of peroxisomal fatty acid oxidation. In Ppara deficient mice, fenofibrate failed to maintain peroxisomal biogenesis and function in HFD-induced liver injury. CONCLUSION: The present data highlight the importance of PPARα-mediated peroxisomal fitness in the protective effect of fenofibrate against NAFLD.


Subject(s)
Chemical and Drug Induced Liver Injury, Chronic , Fenofibrate , Non-alcoholic Fatty Liver Disease , Mice , Male , Animals , Fenofibrate/pharmacology , Fenofibrate/therapeutic use , Diet, High-Fat/adverse effects , Non-alcoholic Fatty Liver Disease/drug therapy , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/prevention & control , PPAR alpha/agonists , Mice, Inbred C57BL , Fatty Acids/metabolism , Lipids
5.
Biomolecules ; 11(2)2021 02 20.
Article in English | MEDLINE | ID: mdl-33672565

ABSTRACT

Irisin is an exercise-induced myokine, suggested to exert beneficial effects on metabolism. However, the studies on the regulation of irisin secretion and the expression of its precursor FNDC5 have shown conflicting data. The discrepancies among previous correlation studies in humans are related to the heterogeneity of the study population. The fact that irisin is not only a myokine but also an adipokine leads to the further complexity of the role of irisin in metabolic regulation. In this study, we examined the regulation of FNDC5 expression and irisin in circulation in both type 1 and type 2 diabetic mice, and their potential relationships with metabolic parameters. In streptozotocin (STZ)-induced type 1 diabetic mice, high-fat diet (HFD)-induced obese mice and db/db mice, the circulating irisin as well as FNDC5 gene expression in subcutaneous fat was downregulated. Muscle FNDC5 expression was only significantly lower in STZ mice, and epididymal fat FNDC5 expression was unaltered. It is interesting to note that plasma irisin levels correlated positively with subcutaneous fat FNDC5 expression, but not epididymal fat or muscle. Moreover, both irisin levels and subcutaneous fat FNDC5 correlated negatively with markers of insulin resistance. These results suggest a regulatory role for subcutaneous fat-derived FNDC5/irisin in metabolic disease.


Subject(s)
Adipose Tissue/metabolism , Diabetes Mellitus, Type 1/metabolism , Diabetes Mellitus, Type 2/metabolism , Fibronectins/biosynthesis , Fibronectins/blood , Metabolic Syndrome/metabolism , Muscle, Skeletal/metabolism , Adipokines/metabolism , Animals , Blood Glucose/metabolism , Disease Models, Animal , Gene Expression Regulation , Insulin Resistance , Male , Mice , Mice, Inbred C57BL , RNA, Messenger/metabolism
6.
Phytomedicine ; 80: 153393, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33120292

ABSTRACT

BACKGROUND: Sarcopenia progresses in chronic kidney disease (CKD) and is positively correlated with mortality in end-stage kidney disease patients. Circulating irisin, an exercise-induced myokine, gradually decreases during CKD stage progression. Irisin inhibits the progression of kidney fibrosis, which is the final common outcome of CKD. Our preliminary study with C2C12 cells showed that Dojuksan, a herbal decoction, increases the expression of PGC1α (a regulator of irisin) and FNDC5 (a precursor of irisin). HYPOTHESIS: Dojuksan may increase circulating irisin and prevent the progression of kidney fibrosis. STUDY DESIGN AND METHODS: Unilateral ureteral obstruction (UUO) was performed on seven-week-old male C57BL/6 mice to induce kidney tubulointerstitial fibrosis. Dojuksan (50, 100, or 200 mg/kg/day) or losartan (1.5 mg/kg/day), a standard clinical treatment for CKD, was administered orally one day prior to surgery and continued for seven days thereafter. To determine the role of irisin released from muscles, TGFß-stimulated murine proximal tubular epithelial cells (mProx24 cells) were treated with conditioned media (CM) from Dojuksan-treated C2C12 muscle cells transfected with FNDC5 siRNA. RESULTS: UUO mice exhibited muscle wasting along with progressive kidney injury. Similar to losartan, Dojuksan ameliorated kidney inflammation and fibrosis in UUO mice. Dojuksan, but not losartan, increased plasma irisin concentration in UUO mice. Dojuksan significantly increased basal FNDC5 expression and inhibited TNFα-induced and indoxyl sulfate-induced FNDC5 down-regulation in C2C12 cells. The TGFß-induced collagen I (COL1) up-regulation in mProx24 cells was effectively inhibited by CM from C2C12 cells after Dojuksan treatment. Moreover, irisin inhibited TGFß-induced COL1 in mProx24 cells, which was not affected by CM from C2C12 cells transfected with FNDC5 siRNA. CONCLUSION: Dojuksan ameliorates kidney fibrosis through irisin-mediated muscle-kidney crosstalk, suggesting that Dojuksan may be used as an alternative therapeutic agent against CKD.


Subject(s)
Drugs, Chinese Herbal/pharmacology , Fibronectins/metabolism , Kidney Diseases/drug therapy , Kidney Diseases/pathology , Muscle, Skeletal/metabolism , Animals , Cell Line , Collagen Type I/metabolism , Fibronectins/genetics , Fibrosis , Kidney Diseases/metabolism , Kidney Tubules/drug effects , Kidney Tubules/metabolism , Kidney Tubules/pathology , Losartan/pharmacology , Male , Medicine, Chinese Traditional , Medicine, Korean Traditional , Mice, Inbred C57BL , Muscle, Skeletal/cytology , Muscle, Skeletal/physiopathology , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Ureteral Obstruction/pathology
7.
Antioxid Redox Signal ; 31(18): 1339-1351, 2019 12 20.
Article in English | MEDLINE | ID: mdl-31530170

ABSTRACT

Aims: Peroxisome is a critical organelle for fatty acid oxidation (FAO) and metabolism of reactive oxygen species (ROS). Increased oxidative stress in adipose tissue contributes to the development of insulin resistance and metabolic syndrome in obesity. This study aimed to investigate the role of peroxisomal fitness in maintaining adipocyte function, which has been under-rated in the obesity research area. Results: Reduced peroxisomal gene expressions in white adipose tissue (WAT) of obese mice suggested a close correlation between peroxisomes and obesity. Peroxisomal biogenesis factor 5 siRNA increased cellular ROS and inflammatory mediators in 3T3-L1 adipocytes. On the contrary, hydrogen peroxide or tumor necrosis factor-α treatment significantly decreased biogenesis- and function-related peroxisomal proteins, suggesting a positive feedback loop of ROS/inflammation and peroxisomal dysfunction. Correspondingly, catalase (a major peroxisomal antioxidant)-knockout mice fed with high-fat diet (HFD) exhibited suppressed peroxisomal proteins along with increased oxidative stress and accelerated obesity. In response to fenofibrate (a peroxisomal proliferator) treatment, WAT of HFD-fed wild-type mice showed not only increases in peroxisomal biogenesis and FAO but also attenuated features of adipocyte dysfunction and obesity. However, these results were not observed in peroxisome proliferator-activated receptor-alpha null obese mice. Innovation: Impaired peroxisomal fitness enhanced oxidative stress and inflammation in adipocytes, which exacerbates obesity. Conclusion: Adipose tissue peroxisomal homeostasis plays an important role in attenuating the features of obesity, and it can be a potential therapeutic target of obesity.


Subject(s)
Adipocytes/metabolism , Oxidative Stress , Peroxisomes/metabolism , 3T3-L1 Cells , Adipose Tissue, White/metabolism , Animals , Blood Glucose/analysis , Cell Differentiation , Cells, Cultured , Glucose Tolerance Test , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Obese , Peroxisomes/genetics , Reactive Oxygen Species/analysis , Reactive Oxygen Species/metabolism
8.
Free Radic Biol Med ; 131: 162-172, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30529270

ABSTRACT

Chronic kidney disease (CKD) has become epidemic worldwide. Mitochondrial reactive oxygen species (ROS)-induced oxidative stress is an important mediator of CKD, and Prx3 plays a critical role in maintenance of mitochondrial ROS. The present study examined the role of Prx3 in the context of fibrosis, a common feature of CKD, using Prx3 KO mice under obstructive and diabetic stress. Prx3 deficiency accelerated fibrosis and inflammation accompanied by mitochondrial oxidative stress in obstructed and diabetic kidneys as well as in proximal tubular epithelial (mProx) cells. In addition, Prx3 deficiency induced Raw264.7 macrophages activation, leading to upregulation of proinflammatory cytokines. Conditioned media from LPS-stimulated Prx3 deficient macrophages accelerated proinflammatory and profibrotic cytokines in mProx cells. Interestingly, Prx3 deficiency induced most inflammatory and fibrotic cytokines at basal condition in both tissues and cells. Taken together, these results demonstrate that Prx3 deficiency can accelerate CKD through interactions between macrophages and tubular epithelial cells.


Subject(s)
Diabetes Mellitus, Experimental/genetics , Epithelial Cells/metabolism , Homeodomain Proteins/genetics , Kidney Tubules/metabolism , Renal Insufficiency, Chronic/genetics , Animals , Arginase/genetics , Arginase/metabolism , Cell Communication , Chemokine CCL2/genetics , Chemokine CCL2/metabolism , Culture Media, Conditioned/pharmacology , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetes Mellitus, Experimental/pathology , Epithelial Cells/drug effects , Epithelial Cells/pathology , Fibronectins/genetics , Fibronectins/metabolism , Fibrosis , Gene Expression Regulation , Homeodomain Proteins/metabolism , Interleukin-10/genetics , Interleukin-10/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Kidney Tubules/drug effects , Kidney Tubules/pathology , Macrophage Activation/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Mitochondria/pathology , Primary Cell Culture , RAW 264.7 Cells , Reactive Oxygen Species/metabolism , Renal Insufficiency, Chronic/chemically induced , Renal Insufficiency, Chronic/metabolism , Renal Insufficiency, Chronic/pathology , Signal Transduction , Streptozocin
9.
Toxicol Res (Camb) ; 8(6): 964-971, 2019 Nov 01.
Article in English | MEDLINE | ID: mdl-32704346

ABSTRACT

Diabetic kidney disease (DKD) is the leading cause of end-stage kidney disease. Epidemiological studies have demonstrated that cigarette smoke or nicotine is a risk factor for the progression of chronic kidney injury. The present study analyzed the kidney toxicity of cigarette smoke in experimental rats with DKD. Experimental diabetes was induced in 7-week-old Sprague-Dawley rats by a single intraperitoneal injection of streptozotocin (60 mg kg-1). Four weeks after the induction of diabetes, rats were exposed to cigarette smoke (200 µg L-1), 4 h daily, and 5 days per week for 4 weeks. Cigarette smoke did not affect the levels of plasma glucose, hemoglobin A1c, high-density lipoprotein cholesterol, low-density lipoprotein cholesterol or non-esterified fatty acids in both control and diabetic rats under the experimental conditions. Cigarette smoke, however, significantly increased diabetes-induced glomerular hypertrophy and urinary kidney injury molecule-1 (KIM-1) and neutrophil gelatinase-associated lipocalin (NGAL) excretion, suggesting exacerbation of diabetic kidney injury. Cigarette smoke promoted macrophage infiltration and fibrosis in the diabetic kidney. As expected, cigarette smoke increased oxidative stress in both control and diabetic rats. These data demonstrated that four weeks of exposure to cigarette smoke aggravated the progression of DKD in rats.

10.
Oncotarget ; 8(43): 74217-74232, 2017 Sep 26.
Article in English | MEDLINE | ID: mdl-29088780

ABSTRACT

NADPH oxidase (Nox)-derived reactive oxygen species (ROS) are increasingly recognized as a key factor in inflammation and extracellular matrix accumulation in diabetic kidney disease. APX-115 (3-phenyl-1-(pyridin-2-yl)-4-propyl-1-5-hydroxypyrazol HCl) is a novel orally active pan-Nox inhibitor. The objective of this study was to compare the protective effect of APX-115 with a renin-angiotensin system inhibitor (losartan), the standard treatment against kidney injury in diabetic patients, on streptozotocin (STZ)-induced diabetic kidney injury. Diabetes was induced by intraperitoneal injection of STZ at 50 mg/kg/day for 5 days in C57BL/6J mice. APX-115 (60 mg/kg/day) or losartan (1.5 mg/kg/day) was administered orally to diabetic mice for 12 weeks. APX-115 effectively prevented kidney injury such as albuminuria, glomerular hypertrophy, tubular injury, podocyte injury, fibrosis, and inflammation as well as oxidative stress in diabetic mice, similar to losartan. In addition, both APX-115 and losartan treatment effectively inhibited mitochondrial and peroxisomal dysfunction associated with lipid accumulation. Our data suggest that APX-115, a pan-Nox inhibitor, may become a novel therapeutic agent against diabetic kidney disease by maintaining peroxisomal and mitochondrial fitness.

SELECTION OF CITATIONS
SEARCH DETAIL
...