Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 15(1): 5460, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38937462

ABSTRACT

Developing superporous hemostatic sponges with simultaneously enhanced permeability and mechanical properties remains challenging but highly desirable to achieve rapid hemostasis for non-compressible hemorrhage. Typical approaches to improve the permeability of hemostatic sponges by increasing porosity sacrifice mechanical properties and yield limited pore interconnectivity, thereby undermining the hemostatic efficacy and subsequent tissue regeneration. Herein, we propose a temperature-assisted secondary network compaction strategy following the phase separation-induced primary compaction to fabricate the superporous chitosan sponge with highly-interconnected porous structure, enhanced blood absorption rate and capacity, and fatigue resistance. The superporous chitosan sponge exhibits rapid shape recovery after absorbing blood and maintains sufficient pressure on wounds to build a robust physical barrier to greatly improve hemostatic efficiency. Furthermore, the superporous chitosan sponge outperforms commercial gauze, gelatin sponges, and chitosan powder by enhancing hemostatic efficiency, cell infiltration, vascular regeneration, and in-situ tissue regeneration in non-compressible organ injury models, respectively. We believe the proposed secondary network compaction strategy provides a simple yet effective method to fabricate superporous hemostatic sponges for diverse clinical applications.


Subject(s)
Chitosan , Hemostasis , Hemostatics , Permeability , Animals , Porosity , Chitosan/chemistry , Hemostatics/chemistry , Hemostatics/pharmacology , Swine , Hemostasis/physiology , Hemorrhage/therapy , Male
2.
Angew Chem Int Ed Engl ; 61(48): e202203847, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36195782

ABSTRACT

The dynamic conformational changes in the secondary structures of proteins are essential to their functions and can regulate diverse cellular events. Herein we report the design of a synthetic polymer-based secondary structure analogue of a zinc finger (ZnF) by introducing a zinc coordination motif to overcome the free energy barrier predicted by theoretical calculations and fold-free polymer chains. The conformational switching between unfolded and folded state of the ZnF analogue can be triggered in situ to drastically manipulate the accessibility of conjugated cell adhesive ligands to the cell membrane receptors, thereby effectively controlling the adhesion, spreading, mechanosensing, and differentiation of stem cells. We believe that emulating the dynamic secondary structures of proteins via rational design of a folded synthetic polymer-cation complex is a promising strategy for developing bioactive materials to mediate desired cellular functions.


Subject(s)
Stem Cells , Zinc Fingers , Cell Differentiation , Ligands , Polymers
SELECTION OF CITATIONS
SEARCH DETAIL
...