Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 9130, 2024 04 21.
Article in English | MEDLINE | ID: mdl-38644400

ABSTRACT

Rice serves as a fundamental food staple for humans. Its production process, however, unavoidably exposes it to pesticides which may detrimentally impact its quality due to residues. Therefore, it is extremely necessary to monitor pesticide residues on rice during storage. In this research, the Quatformer model, which considers the effects of temperature and humidity on pesticide residues in rice grains, was utilized to forecast the amount of pesticide residues in rice grains during the storage process, and the predicted results were combined with actual observations to form a quality assessment index. By applying the K-Means algorithm, the quality of rice grains was graded and assessed. The findings indicated that the model had high prediction accuracy, and the MAE, MSE, MAPE, RMSE and SMAPE indexes were calculated to be 0.0112, 0.0814, 0.1057, 0.1055 and 0.0204, respectively. These findings provide valuable technical and theoretical support for planning storage conditions, enhancing pesticide residue decomposition, and monitoring rice quality during storage.


Subject(s)
Food Storage , Oryza , Pesticide Residues , Oryza/chemistry , Pesticide Residues/analysis , Food Storage/methods , Food Contamination/analysis , Temperature , Algorithms , Humidity
2.
Foods ; 12(11)2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37297485

ABSTRACT

To assess and predict the food safety risk of benzopyrene (BaP) in edible oils in China, this study collected national sampling data of edible oils from 20 Chinese provinces and their prefectures in 2019, and constructed a risk assessment model of BaP in edible oils with consumption data. Initially, the k-means algorithm was used for risk classification; then the data were pre-processed and trained to predict the data using the Long Short-Term Memory (LSTM) and the eXtreme Gradient Boosting (XGBoost) models, respectively, and finally, the two models were combined using the inverse error method. To test the effectiveness of the prediction model, this study experimentally validated the model according to five evaluation metrics: root mean square error (RMSE), mean absolute error (MAE), precision, recall, and F1 score. The variable-weight combined LSTM-XGBoost prediction model proposed in this paper achieved a precision of 94.62%, and the F1 score value reached 95.16%, which is significantly better than other neural network models; the results demonstrate that the prediction model has certain stability and feasibility. Overall, the combined model used in this study not only improves the accuracy but also enhances the practicality, real-time capabilities, and expandability of the model.

3.
Foods ; 12(3)2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36766072

ABSTRACT

Focused supervision and early warning of heavy metal (HM)-contaminated rice areas can effectively protect people's livelihood security and maintain social stability. To improve the accuracy of risk prediction, an Informer-based safety risk prediction model for HMs in rice is constructed in this paper. First, based on the national sampling data and residential consumption statistics of rice, we construct a dataset of evaluation indicators that can characterize the level of rice safety risk so as to form a safety risk space. Second, based on the K-medoids clustering algorithm, we classify the rice safety risk space into levels. Finally, we use the Informer neural network model to predict the safety risk indicators of rice in each province so as to predict the safety risk level. This study compares the prediction accuracy of a self-constructed dataset of rice safety risk assessment indicators. The experimental results show that the prediction precision of the method proposed in this paper reaches 99.17%, 91.77%, and 91.33% for low, medium, and high risk levels, respectively. The model provides technical support and a scientific basis for screening the time and area of HM contamination of rice, which needs focus.

4.
Foods ; 11(12)2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35741888

ABSTRACT

Early warning and focused regulation of veterinary drug residues in freshwater products can protect human health and stabilize social development. To improve the prediction accuracy, this paper constructs a Transformer-based model for predicting the safety risk level of veterinary drug residues in freshwater products in China to conduct a comprehensive assessment and prediction of the three veterinary drug residues with the maximum detection rate in freshwater products, including florfenicol, enrofloxacin and sulfonamides. Using the national sampling data and consumption data of freshwater products from 2019 to 2021, this paper constructs a self-built dataset, combined with the k-means algorithm, to establish the risk-level space. Finally, based on a Transformer neural network model, the safety risk assessment index is predicted on a self-built dataset, with the corresponding risk level for prediction. In this paper, comparison experiments are conducted on the self-built dataset. The experimental results show that the prediction model proposed in this paper achieves a recall rate of 94.14%, which is significantly better than other neural network models. The model proposed in this paper provides a scientific basis for the government to implement focused regulation, and it also provides technical support for the government's intervention regulation.

5.
Foods ; 11(7)2022 Apr 06.
Article in English | MEDLINE | ID: mdl-35407150

ABSTRACT

The supervision of security risk level of carbofuran pesticide residues can guarantee the food quality and security of residents effectively. In order to predict the potential key risk vegetables and regions, this paper constructs a security risk assessment model, combined with the k-means++ algorithm, to establish the risk security level. Then the evaluation index value of the security risk model is predicted to determine the security risk level based on the deep learning model. The model consists of a convolutional neural network (CNN) and a long short-term memory network (LSTM) optimized by an arithmetic optimization algorithm (AOA), namely, CNN-AOA-LSTM. In this paper, a comparative experiment is conducted on a small sample data set of independently constructed security risk assessment indicators. Experimental results show that the accuracy of the CNN-AOA-LSTM prediction model based on attention mechanism is 6.12% to 18.99% higher than several commonly used deep neural network models (gated recurrent unit, LSTM, and recurrent neural networks). The prediction model proposed in this paper provides scientific reference to establish the priority order of supervision, and provides forward-looking supervision for the government.

6.
Food Sci Nutr ; 10(3): 879-887, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35311174

ABSTRACT

This study aims to evaluate the risk of lead pollution in 9 kinds of vegetables consumed by residents in 20 provinces/cities of China. Sampling data and vegetable consumption data from 20 provinces/cities in 2019 were used. Combined with dietary exposure assessment, the vegetable categories and provinces were paired, and a risk classification model based on spectral clustering algorithms was proposed. The results of the spectral clustering algorithm showed that the risk level of lead pollution in vegetables can be divided into five levels. The combination of vegetable-province/cities at the risk level of 1 and 2 accounted for 92.78%, and that at the risk level of 4 and 5 accounted for 2.22%. The high-risk combinations were fresh edible fungus-Shaanxi, fresh edible fungus-Sichuan, and fresh edible fungus-Shanghai and bean sprouts-Guangdong. In the proposed model, objective data were used as the classification index, and the spectral clustering algorithm was employed to select the optimal risk classification in a data-driven way. As a result, the influence of subjective factors was effectively reduced, the risk of lead pollution in vegetables was classified, and the results were scientific and accurate. This study provides a scientific basis of supervision priorities for regulatory departments.

SELECTION OF CITATIONS
SEARCH DETAIL
...