Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Pharm Sci ; 181: 106343, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36436754

ABSTRACT

Amplification of the MYCN gene (MNA) is observed in approximately 25 to 35% of neuroblastoma patients, and is a well-recognized marker of tumor aggressiveness and poor outcome. Targeting MYCN is a novel therapy strategy to induce tumor regression. Here, we discovered that a BIRC5/Survivin inhibitor, YM155, specifically inhibits MNA neuroblastoma cell growth in vitro. We found that YM155 promotes MYCN degradation in MNA cells. Further, we found that YM155 inhibits USP7 deubiquitinase activity in vitro, using Ub-aminomethylcoumarin (Ub-AMC) as substrate. Results from in vivo studies further demonstrated that YM155 significantly inhibited the tumor growth in MNA neuroblastoma xenograft model. Our data support a novel mechanism of action of YM155 in inhibition of growth of cancer cells through inducing MYCN degradation by inibition of activity of deubiquitinase like USP7.


Subject(s)
N-Myc Proto-Oncogene Protein , Neuroblastoma , Ubiquitin-Specific Peptidase 7 , Humans , Cell Line, Tumor , Cell Proliferation , N-Myc Proto-Oncogene Protein/metabolism , Neuroblastoma/drug therapy , Neuroblastoma/genetics , Neuroblastoma/metabolism , Ubiquitin-Specific Peptidase 7/antagonists & inhibitors , Proteolysis
2.
J Med Chem ; 47(20): 4941-9, 2004 Sep 23.
Article in English | MEDLINE | ID: mdl-15369398

ABSTRACT

Peptide deformylase (PDF) catalyzes the removal of the N-terminal formyl group from newly synthesized polypeptides in eubacteria. Its essential role in bacterial cells but not in mammalian cells makes it an attractive target for antibacterial drug design. We have previously reported an N-formylhydroxylamine-based, metal-chelating macrocyclic PDF inhibitor, in which the P(1)' and P(3)' side chains are covalently joined. In this work, we have carried out a structure-activity relationship study on the size of the macrocycle and found that 15-17-membered macrocycles are optimal for binding to the PDF active site. Unlike the acyclic compounds, which are simple competitive inhibitors, the cyclic compounds all act as slow-binding inhibitors. As compared to their acyclic counterparts, the cyclic inhibitors displayed 20-50-fold higher potency against the PDF active site (K(I) as low as 70 pM), improved selectivity toward PDF, and improved the metabolic stability in rat plasma. Some of the macrocyclic inhibitors had potent, broad spectrum antibacterial activity against clinically significant Gram-positive and Gram-negative pathogens. These results suggest that the macrocyclic scaffold provides an excellent lead for the development of a new class of antibiotics.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Heterocyclic Compounds/chemistry , Amidohydrolases/chemistry , Amidohydrolases/metabolism , Animals , Binding Sites , Drug Evaluation, Preclinical/methods , Drug Stability , Humans , Microbial Sensitivity Tests , Rats , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...