Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 192
Filter
1.
Adv Mater ; : e2402386, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38708954

ABSTRACT

Ionic liquid-based thermoelectric gels become a compelling candidate for thermoelectric power generation and sensing due to their giant thermopower, good thermal stability, high flexibility, and low-cost production. However, the materials reported to date suffer from canonical trade-offs between self-healing ability, stretchability, strength, and ionic conductivity. Herein, a self-healing and tough ionogel (PEO/LiTFSI/EmimCl) with tunable thermoelectric properties by tailoring metal-halogen bonding interactions, is developed. Different affinities between polymer matrix and salts are exploited to induce phase separation, resulting in simultaneous enhancement of ionic conductivity and mechanical strength. Molecular dynamics (MD) simulations and spectroscopic analyses show that Cl- ions impair the lithium-ether oxygen coordination, leading to changes in chain conformation. The migration difference between cations and anions is thus widened and a transition from n-type to p-type thermoelectric ionogels is realized. Furthermore, the dynamic interactions of metal-ligand coordination and hydrogen bonding yield autonomously self-healing capability, large stretchability (2000%), and environment-friendly recyclability. Benefiting from these fascinating properties, the multifunctional PEO-based ionogels are applied in sensors, supercapacitors, and thermoelectric power generation modules. The strategy of tuning solvation dominance to address the trade-offs in thermoelectric ionogels and optimize their macroscopic properties offers new possibilities for the design of advanced ionogels.

2.
Natl Sci Rev ; 11(5): nwae081, 2024 May.
Article in English | MEDLINE | ID: mdl-38577675

ABSTRACT

Hierarchical self-assembly with long-range order above centimeters widely exists in nature. Mimicking similar structures to promote reaction kinetics of electrochemical energy devices is of immense interest, yet remains challenging. Here, we report a bottom-up self-assembly approach to constructing ordered mesoporous nanofibers with a structure resembling vascular bundles via electrospinning. The synthesis involves self-assembling polystyrene (PS) homopolymer, amphiphilic diblock copolymer, and precursors into supramolecular micelles. Elongational dynamics of viscoelastic micelle solution together with fast solvent evaporation during electrospinning cause simultaneous close packing and uniaxial stretching of micelles, consequently producing polymer nanofibers consisting of oriented micelles. The method is versatile for the fabrication of large-scale ordered mesoporous nanofibers with adjustable pore diameter and various compositions such as carbon, SiO2, TiO2 and WO3. The aligned longitudinal mesopores connected side-by-side by tiny pores offer highly exposed active sites and expedite electron/ion transport. The assembled electrodes deliver outstanding performance for lithium metal batteries.

3.
Adv Mater ; : e2400059, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684087

ABSTRACT

Materials that can provide reliable electromagnetic interference (EMI) shielding in highly oxidative atmosphere at elevated temperature are indispensable in the fast-developing aerospace field. However, most of conductor-type EMI shielding materials such as metals can hardly withstand the high-temperature oxidation, while the conventional dielectric-type materials cannot offer sufficient shielding efficiency in gigahertz (GHz) frequencies. Here, a highly deficient medium-entropy (ME) perovskite ceramic as an efficient EMI shielding material in harsh environment, is demonstrated. The synergistic effect of entropy stabilization and aliovalent substitution on A-site generate abnormally high concentration of Ti and O vacancies that are stable under high-temperature oxidation. Due to the clustering of vacancies, the highly deficient perovskite ceramic exhibits giant complex permittivity and polarization loss in GHz, leading to the specific EMI shielding effectiveness above 30 dB/mm in X-band even after 100 h of annealing at 1000 °C in air. Along with the low thermal conductivity, the aliovalent ME perovskite can serve as a bifunctional shielding material for applications in aircraft engines and reusable rockets.

4.
Nat Commun ; 15(1): 2141, 2024 Mar 08.
Article in English | MEDLINE | ID: mdl-38459024

ABSTRACT

Flexible thermoelectric devices show great promise as sustainable power units for the exponentially increasing self-powered wearable electronics and ultra-widely distributed wireless sensor networks. While exciting proof-of-concept demonstrations have been reported, their large-scale implementation is impeded by unsatisfactory device performance and costly device fabrication techniques. Here, we develop Ag2Se-based thermoelectric films and flexible devices via inkjet printing. Large-area patterned arrays with microscale resolution are obtained in a dimensionally controlled manner by manipulating ink formulations and tuning printing parameters. Printed Ag2Se-based films exhibit (00 l)-textured feature, and an exceptional power factor (1097 µWm-1K-2 at 377 K) is obtained by engineering the film composition and microstructure. Benefiting from high-resolution device integration, fully inkjet-printed Ag2Se-based flexible devices achieve a record-high normalized power (2 µWK-2cm-2) and superior flexibility. Diverse application scenarios are offered by inkjet-printed devices, such as continuous power generation by harvesting thermal energy from the environment or human bodies. Our strategy demonstrates the potential to revolutionize the design and manufacture of multi-scale and complex flexible thermoelectric devices while reducing costs, enabling them to be integrated into emerging electronic systems as sustainable power sources.

5.
ACS Appl Mater Interfaces ; 16(12): 15372-15382, 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38494605

ABSTRACT

Electromagnetic interference (EMI) shielding and infrared stealth technologies are essential for military and civilian applications. However, it remains a significant challenge to integrate various functions efficiently into a material efficiently. Herein, a minimalist strategy to fabricate multifunctional phase change organohydrogels (PCOHs) was proposed, which were fabricated from polyacrylamide (PAM) organohydrogels, MXene/PEDOT:PSS hybrid fillers, and sodium sulfate decahydrate (Na2SO4·10H2O, SSD) via one-step photoinitiation strategies. PCOHs with a high enthalpy value (130.7 J/g) and encapsulation rate (98%) could adjust the temperature by triggering a phase change of SSD, which can hide infrared radiation to achieve medium-low temperature infrared stealth. In addition, the PCOH-based sensor has good strain sensing ability due to the incorporation of MXene/PEDOT:PSS and can precisely monitor human movement. Remarkably, benefiting from the electron conduction of the three-dimensional conductive network and the ion conduction of the hydrogel, the EMI shielding efficiency (k) of PCOHs can reach 99.99% even the filler content as low as 1.8 wt %. Additionally, EMI shielding, infrared stealth, and sensing-integrated PCOHs can be adhered to arbitrary targets due to their excellent flexibility and adaptability. This work offers a promising pathway for fabricating multifunctional phase change materials, which show great application prospects in military and civilian fields.

6.
Int Immunopharmacol ; 131: 111896, 2024 Apr 20.
Article in English | MEDLINE | ID: mdl-38518596

ABSTRACT

CD155 is an immunoglobulin-like protein overexpressed in almost all the tumor cells, which not only promotes proliferation, adhesion, invasion, and migration of tumor cells, but also regulates immune responses by interacting with TIGIT, CD226 or CD96 receptors expressed on several immune cells, thereby modulating the functionality of these cellular subsets. As a novel immune checkpoint, the inhibition of CD155/TIGIT, either as a standalone treatment or in conjunction with other immune checkpoint inhibitors, has demonstrated efficacy in managing advanced solid malignancies. In this review, we summarize the intricate relationship between on tumor surface CD155 and its receptors, with further discussion on how they regulate the occurrence of tumor immune escape. In addition, novel therapeutic strategies and clinical trials targeting CD155 and its receptors are summarized, providing a strong rationale and way forward for the development of next-generation immunotherapies.


Subject(s)
Neoplasms , Humans , Neoplasms/therapy , Immunotherapy , Receptors, Immunologic/metabolism , Receptors, Virus/metabolism
7.
Environ Toxicol ; 39(5): 2908-2926, 2024 May.
Article in English | MEDLINE | ID: mdl-38299230

ABSTRACT

BACKGROUND: Colorectal cancer (CRC) presents a significant global health burden, characterized by a heterogeneous molecular landscape and various genetic and epigenetic alterations. Programmed cell death (PCD) plays a critical role in CRC, offering potential targets for therapy by regulating cell elimination processes that can suppress tumor growth or trigger cancer cell resistance. Understanding the complex interplay between PCD mechanisms and CRC pathogenesis is crucial. This study aims to construct a PCD-related prognostic signature in CRC using machine learning integration, enhancing the precision of CRC prognosis prediction. METHOD: We retrieved expression data and clinical information from the Cancer Genome Atlas and Gene Expression Omnibus (GEO) datasets. Fifteen forms of PCD were identified, and corresponding gene sets were compiled. Machine learning algorithms, including Lasso, Ridge, Enet, StepCox, survivalSVM, CoxBoost, SuperPC, plsRcox, random survival forest (RSF), and gradient boosting machine, were integrated for model construction. The models were validated using six GEO datasets, and the programmed cell death score (PCDS) was established. Further, the model's effectiveness was compared with 109 transcriptome-based CRC prognostic models. RESULT: Our integrated model successfully identified differentially expressed PCD-related genes and stratified CRC samples into four subtypes with distinct prognostic implications. The optimal combination of machine learning models, RSF + Ridge, showed superior performance compared with traditional methods. The PCDS effectively stratified patients into high-risk and low-risk groups, with significant survival differences. Further analysis revealed the prognostic relevance of immune cell types and pathways associated with CRC subtypes. The model also identified hub genes and drug sensitivities relevant to CRC prognosis. CONCLUSION: The current study highlights the potential of integrating machine learning models to enhance the prediction of CRC prognosis. The developed prognostic signature, which is related to PCD, holds promise for personalized and effective therapeutic interventions in CRC.


Subject(s)
Apoptosis , Colorectal Neoplasms , Humans , Prognosis , Machine Learning , Colorectal Neoplasms/genetics
8.
Aging (Albany NY) ; 16(2): 1161-1181, 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38231472

ABSTRACT

Chronic Cerebral Hypoperfusion (CCH) is associated with cognitive dysfunction, the underlying mechanisms of which remain elusive, hindering the development of effective therapeutic approaches. In this study, we employed an established CCH animal model to delve into neuropathological alterations like oxidative stress, inflammation, neurotransmitter synthesis deficits, and other morphological alterations. Our findings revealed that while the number of neurons remained unchanged, there was a significant reduction in neuronal fibers post-CCH, as evidenced by microtubule-associated protein 2 (MAP2) staining. Moreover, myelin basic protein (MBP) staining showed exacerbated demyelination of neuronal fibers. Furthermore, we observed increased neuroinflammation, proliferation, and activation of astrocytes and microglia, as well as synaptic loss and microglial-mediated synapse engulfment post-CCH. Utilizing RNA sequencing, differential expression analysis displayed alterations in both mRNAs and circRNAs. Following gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses, both showed significant enrichment in immunological and inflammation-related terms and pathways. Importantly, the differentially expressed circular RNAs (DE circRNAs) exhibited a notable coexpression pattern with DE mRNAs. The ternary circRNA-miRNA-mRNA competing endogenous RNAs (ceRNA) network was constructed, and subsequent analysis reiterated the significance of neuroimmunological and neuroinflammatory dysfunction in CCH-induced neuropathological changes and cognitive dysfunction. This study underscores the potential role of circRNAs in these processes, suggesting them as promising therapeutic targets to mitigate the detrimental effects of CCH.


Subject(s)
Cognitive Dysfunction , MicroRNAs , Animals , RNA, Circular/genetics , RNA, Competitive Endogenous , MicroRNAs/metabolism , RNA, Messenger/metabolism , Inflammation/genetics , Cognitive Dysfunction/genetics , Gene Regulatory Networks
9.
ACS Appl Mater Interfaces ; 16(4): 4671-4678, 2024 Jan 31.
Article in English | MEDLINE | ID: mdl-38235651

ABSTRACT

Despite the attractive thermoelectric properties in single crystals, the fabrication of high-performance polycrystalline SnSe by a cost-effective strategy remains challenging. In this study, we prepare the undoped SnSe ceramic with remarkable thermoelectric efficiency by the combination of a cold sintering process (CSP) and thermal annealing. The high sintering pressure during CSP induces not only highly oriented grains but also a high concentration of lattice dislocations and stacking faults, which leads to large lattice strain that can shorten the phonon relaxation time. Meanwhile, the thermal annealing breaks the highly resistive SnOx layers at grain boundaries, which improves the electrical conductivity and power factor. In addition, the grain growth during annealing further turns the broken SnOx layers into nanoparticles, which further lowers the thermal conductivity by enhanced scattering. As a result, a peak ZT of 1.3 at 890 K and a high average ZT of 0.69 are achieved in the polycrystalline SnSe, suggesting great potential in mid-temperature power generation. This work may pave the way for the mass production of SnSe-based ceramics for thermoelectric devices.

10.
Curr Probl Cardiol ; 49(2): 102226, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38040207

ABSTRACT

Scavenger Receptor Class B Type 1 (SR-B1), a receptor protein expressed on the cell membrane, plays a crucial role in the metabolism and transport of cholesterol and other lipids, contributing significantly to the homeostasis of lipid levels within the body. Bibliometric analysis involves the application of mathematical and statistical methods to quantitatively analyze different types of documents. It involves the analysis of structural and temporal trends in scholarly articles, coupled with the identification of subject emphasis and variations. Through a bibliometric analysis, this study examines the historical background, current research trends, and future directions in the exploration of SR-B1. By offering insights into the research status and development of SR-B1, this paper aims to assist researchers in identifying novel pathways and areas of investigation in this field of study. Following the screening process, it can be concluded that research on SR-B1 has consistently remained a topic of significant interest over the past 17 years. Interestingly, SR-B1 has recently garnered attention in areas beyond its traditional research focus, including the field of cancer. The primary objective of this review is to provide a concise and accessible overview of the development process of SR-B1 that can help readers who are not well-versed in SR-B1 research quickly grasp its key aspects. Furthermore, this review aims to offer insights and suggestions to researchers regarding potential future research directions and areas of emphasis relating to SR-B1.


Subject(s)
Cholesterol , Humans , Cholesterol/metabolism , Scavenger Receptors, Class B/metabolism
11.
Small ; 20(15): e2307473, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38009727

ABSTRACT

With the advent of wireless technology, magnetic-carbon composites with strong electromagnetic wave (EMW) absorption capability in low-/middle-frequency range are highly desirable. However, it remains challenging for rational construction of such absorbers bearing multiple magnetic components that show uniform distribution and favorable magnetic loss. Herein, a facile metal-oxo cluster (MOC) precursor strategy is presented to produce high-efficiency magnetic carbon composites. Nanosized MOC Fe15 shelled with organic ligands is employed as a novel magnetic precursor, thus allowing in situ formation and uniform deposition of multicomponent magnetic Fe/Fe3O4@Fe3C and Fe/Fe3O4 nanoparticles on graphene oxides (GOs) and carbon nanotubes (CNTs), respectively. Owing to the good dispersity and efficient magnetic-dielectric synergy, quaternary Fe/Fe3O4@Fe3C-GO exhibits strong low-frequency absorption with RLmin of -53.5 dB at C-band and absorption bandwidth covering 3.44 GHz, while ultrahigh RLmin of -73.2 dB is achieved at X-band for ternary Fe/Fe3O4-CNT. The high performance for quaternary and ternary composites is further supported by the optimal specific EMW absorption performance (-15.7 dB mm-1 and -31.8 dB mm-1) and radar cross-section reduction (21.72 dB m2 and 34.37 dB m2). This work provides a new avenue for developing lightweight low-/middle-frequency EMW absorbers, and will inspire the investigation of more advanced EMW absorbers with multiple magnetic components and regulated microstructures.

12.
Med Res Rev ; 44(2): 833-866, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38014919

ABSTRACT

Lysine-specific demethylase 1 (LSD1) is a flavin adenine dinucleotide (FAD) dependent monoamine oxidase (MAO) that erases the mono-, and dimethylation of histone 3 lysine 4 (H3K4), resulting in the suppression of target gene transcriptions. Besides, it can also demethylate some nonhistone substrates to regulate their biological functions. As reported, LSD1 is widely upregulated and plays a key role in several kinds of cancers, pharmacological or genetic ablation of LSD1 in cancer cells suppresses cell aggressiveness by several distinct mechanisms. Therefore, numerous LSD1 inhibitors, including covalent and noncovalent, have been developed and several of them have entered clinical trials. Herein, we systemically reviewed and discussed the biological function of LSD1 in tumors, lymphocytes as well as LSD1-targeting inhibitors in clinical trials, hoping to benefit the field of LSD1 and its inhibitors.


Subject(s)
Lysine , Neoplasms , Humans , Lysine/therapeutic use , Histone Demethylases/metabolism , Histone Demethylases/therapeutic use , Monoamine Oxidase Inhibitors/therapeutic use , Histones , Neoplasms/drug therapy , Drug Discovery , Enzyme Inhibitors/pharmacology , Enzyme Inhibitors/therapeutic use
13.
Biomaterials ; 304: 122403, 2024 01.
Article in English | MEDLINE | ID: mdl-38016335

ABSTRACT

Gene therapy has been adapted, from the laboratory to the clinic, to treat retinopathies. In contrast to subretinal route, intravitreal delivery of AAV vectors displays the advantage of bypassing surgical injuries, but the viral particles are more prone to be nullified by the host neutralizing factors. To minimize such suppression of therapeutic effect, especially in terms of AAV2 and its derivatives, we introduced three serine-to-glycine mutations, based on the phosphorylation sites identified by mass spectrum analysis, to the XL32 capsid to generate a novel serotype named AAVYC5. Via intravitreal administration, AAVYC5 was transduced more effectively into multiple retinal layers compared with AAV2 and XL32. AAVYC5 also enabled successful delivery of anti-angiogenic molecules to rescue laser-induced choroidal neovascularization and astrogliosis in mice and non-human primates. Furthermore, we detected fewer neutralizing antibodies and binding IgG in human sera against AAVYC5 than those specific for AAV2 and XL32. Our results thus implicate this capsid-optimized AAVYC5 as a promising vector suitable for a wide population, particularly those with undesirable AAV2 seroreactivity.


Subject(s)
Capsid , Choroidal Neovascularization , Humans , Mice , Animals , Capsid/metabolism , Dependovirus/genetics , Serogroup , Transduction, Genetic , Choroidal Neovascularization/therapy , Tropism , Capsid Proteins/metabolism , Genetic Vectors/genetics
14.
Curr Probl Cardiol ; 49(1 Pt C): 102116, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37802168

ABSTRACT

Mpox, a novel epidemic disease, has broken out the period of coronavirus disease 2019 since May 2022, which was caused by the mpox virus. Up to 12 September 2023, there are more than 90,439 confirmed mpox cases in over 115 countries all over the world. Moreover, the outbreak of mpox in 2022 was verified to be Clade II rather than Clade I. Highlighting the significance of this finding, a growing body of literature suggests that mpox may lead to a series of cardiovascular complications, including myocarditis and pericarditis. It is indeed crucial to acquire more knowledge about mpox from a perspective from the clinical cardiologist. In this review, we would discuss the epidemiological characteristics and primary treatments of mpox to attempt to provide a framework for cardiovascular physicians.


Subject(s)
COVID-19 , Cardiovascular Diseases , Mpox (monkeypox) , Myocarditis , Pericarditis , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/etiology , COVID-19/epidemiology , Pericarditis/epidemiology , Pericarditis/etiology , Pericarditis/therapy
15.
Curr Probl Cardiol ; 49(1 Pt B): 102088, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37716542

ABSTRACT

Vascular disease is a common problem with high mortality all over the world. Apelin-13, a key subtype of apelin, takes part in many physiological and pathological responses via regulating many target genes and target molecules or participating in many signaling pathways. More and more studies have demonstrated that apelin-13 is implicated in the onset and progression of vascular disease in recent years. It has been shown that apelin-13 could ameliorate vascular disease by inhibiting inflammation, restraining apoptosis, suppressing oxidative stress, and facilitating autophagy. In this article, we sum up the progress of apelin-13 in the occurrence and development of vascular disease and offer some insightful views about the treatment and prevention strategies of vascular disease.


Subject(s)
Intercellular Signaling Peptides and Proteins , Vascular Diseases , Humans , Intercellular Signaling Peptides and Proteins/therapeutic use , Vascular Diseases/prevention & control
16.
Curr Probl Cardiol ; 49(1 Pt B): 102096, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37741601

ABSTRACT

Nuclear factor interleukin-3 (NFIL3), a proline- and acidic-residue-rich (PAR) bZIP transcription factor, is called the E4 binding protein 4 (E4BP4) as well, which is relevant to regulate the circadian rhythms and the viability of cells. More and more evidence has shown that NFIL3 is associated with different cardiovascular diseases. In recent years, it has been found that NFIL3 has significant functions in the progression of atherosclerosis (AS) via the regulation of inflammatory response, macrophage polarization, some immune cells and lipid metabolism. In this overview, we sum up the function of NFIL3 during the development of AS and offer meaningful views how to treat cardiovascular disease related to AS.


Subject(s)
Atherosclerosis , Interleukin-3 , Humans , Basic-Leucine Zipper Transcription Factors/metabolism
17.
Curr Probl Cardiol ; 49(1 Pt C): 102161, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37875209

ABSTRACT

ABCG1 is an essential protein involved in the efflux of intracellular cholesterol to the extracellular space, thus playing a critical role in reducing cholesterol accumulation in neighboring tissues. Bibliometric analysis pertains to the interdisciplinary field of quantitative examination of diverse documents using mathematical and statistical techniques. It integrates the investigation of structural and temporal patterns in academic publications with an exploration of subject focus and forms of uncertainty. This research paper examines the historical evolution, current areas of interest, and future development trends of ABCG1 through bibliometric analysis. This study aims to offer readers insights into the research status and emerging trends of ABCG1, thereby assisting researchers in the exciting field to explore novel research avenues. Following rigorous selection, research on ABCG1 has remained highly active over the past two decades. ABCG1 has even started to emerge in previously unrelated fields, such as the field of cancer research. According to the analysis conducted by Citespace, a lot of keywords and influential citations were identified. ABCG1 has been found to establish a connection between cancer and cardiovascular disease, highlighting their interrelationship. This review aims to assist readers who have limited familiarity with ABCG1 research in gaining a rapid understanding of its developmental trajectory. Additionally, it aims to offer researchers potential areas of focus for future studies related to ABCG1.


Subject(s)
ATP Binding Cassette Transporter, Subfamily G, Member 1 , Cholesterol , Humans , Cholesterol/metabolism
18.
Nanomicro Lett ; 15(1): 238, 2023 Oct 26.
Article in English | MEDLINE | ID: mdl-37882895

ABSTRACT

Electrochemical reduction of CO2 into high-value hydrocarbons and alcohols by using Cu-based catalysts is a promising and attractive technology for CO2 capture and utilization, resulting from their high catalytic activity and selectivity. The mobility and accessibility of active sites in Cu-based catalysts significantly hinder the development of efficient Cu-based catalysts for CO2 electrochemical reduction reaction (CO2RR). Herein, a facile and effective strategy is developed to engineer accessible and structural stable Cu sites by incorporating single atomic Cu into the nitrogen cavities of the host graphitic carbon nitride (g-C3N4) as the active sites for CO2-to-CH4 conversion in CO2RR. By regulating the coordination and density of Cu sites in g-C3N4, an optimal catalyst corresponding to a one Cu atom in one nitrogen cavity reaches the highest CH4 Faraday efficiency of 49.04% and produces the products with a high CH4/C2H4 ratio over 9. This work provides the first experimental study on g-C3N4-supported single Cu atom catalyst for efficient CH4 production from CO2RR and suggests a principle in designing highly stable and selective high-efficiency Cu-based catalysts for CO2RR by engineering Cu active sites in 2D materials with porous crystal structures.

19.
Sci Adv ; 9(43): eadk2098, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37878706

ABSTRACT

Ionic liquid-based ionogels emerge as promising candidates for efficient ionic thermoelectric conversion due to their quasi-solid state, giant thermopower, high flexibility, and good stability. P-type ionogels have shown impressive performance; however, the development of n-type ionogels lags behind. Here, an n-type ionogel consisting of polyethylene oxide (PEO), lithium salt, and ionic liquid is developed. Strong coordination of lithium ion with ether oxygen and the anion-rich clusters generated by ion-preferential association promote rapid transport of the anions and boost Eastman entropy change, resulting in a huge negative ionic Seebeck coefficient (-15 millivolts per kelvin) and a high electrical conductivity (1.86 millisiemens per centimeter) at 50% relative humidity. Moreover, dynamic and reversible interactions among the ternary mixtures endow the ionogel with fast autonomous self-healing capability and green recyclability. All PEO-based ionic thermoelectric modules are fabricated, which exhibits outstanding thermal responses (-80 millivolts per kelvin for three p-n pairs), demonstrating great potential for low-grade energy harvesting and ultrasensitive thermal sensing.

20.
ACS Omega ; 8(42): 39143-39153, 2023 Oct 24.
Article in English | MEDLINE | ID: mdl-37901577

ABSTRACT

The dust in the breathing zone of the fully mechanized mining face poses a serious threat to the lives and health of the workers, and clarifying the distribution and settlement pattern of the dust in the breathing zone is an important foundation for reducing dust concentrations in the breathing zone and improving the workers' working environment. The dust concentration distribution at the mining face and the settlement results of different dust particle sizes along the breathing zone were analyzed in detail using a combination of computational fluid dynamics simulation and downhole measurements by establishing a highly simulated 3D solid model of the 2302 fully mechanized mining face at the Xinqiao coal mine. The study's findings reveal that dust from advanced support and coal-cutting processes converge within 20-60 m of the coal mining region, generating a high-concentration pollution zone at the height of the sidewalk breathing zone. The particle size of dust in the breathing zone is primarily concentrated between 1 and 40 µm, and the fully mechanized mining face is split into a rapid settling area, a medium settling area, and a slow settling area based on particle size settling speed. Eddy currents in the return airway lead to an increase in dust particles of 20-40 µm in the breathing zone area. The results of the study can provide a theoretical basis for dust management at the fully mechanized mining face for the breathing zone area.

SELECTION OF CITATIONS
SEARCH DETAIL
...