Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
1.
Adv Healthc Mater ; : e2400346, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684106

ABSTRACT

The management of infected bone defects poses a significant clinical challenge, and current treatment modalities exhibit various limitations. This study focuses on the development of a multifunctional composite scaffold comprising nanohydroxyapatite/polyethyleneglycol diacrylate matrix, silver nanoparticles, graphene oxide (GO), sodium alginate, and M2-type macrophage membrane vesicles (MVs) to enhance the healing of infected bone defects. The composite scaffold demonstrates several key features: first, it releases sufficient quantities of silver ions to effectively eliminate bacteria; second, the controlled release of MVs leads to a notable increase in M2-type macrophages, thereby significantly mitigating the inflammatory response. Additionally, GO acts synergistically with nanohydroxyapatite to enhance osteoinductive activity, thereby fostering bone regeneration. Through meticulous in vitro and in vivo investigations, the composite scaffold exhibits broad-spectrum antimicrobial effects, robust immunomodulatory capabilities, and enhanced osteoinductive activity. This multifaceted composite scaffold presents a promising approach for the sequential treatment of infected bone defects, addressing the antimicrobial, immunomodulatory, and osteogenic aspects. This study introduces innovative perspectives and offers new and effective treatment alternatives for managing infected bone defects.

2.
Aesthetic Plast Surg ; 48(5): 1045-1053, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37726399

ABSTRACT

With the development of tissue engineering, the application of decellularized adipose matrix as scaffold material in tissue engineering has been intensively explored due to its wide source and excellent potential in tissue regeneration. Decellularized adipose matrix is a promising candidate for adipose tissue regeneration, while modification of decellularized adipose matrix scaffold can also allow it to transcend the limitations of adipose tissue source properties and applied to other tissue engineering fields, including cartilage and bone tissue engineering, neural tissue engineering, and skin tissue engineering. In this review, we summarized the development of the applications of decellularized adipose matrix in different tissue engineering and present future perspectives.Level of Evidence III This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Adipose Tissue , Tissue Engineering , Humans , Wound Healing , Cartilage
3.
Int Wound J ; 21(3): e14457, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909266

ABSTRACT

We aimed to quantitatively and systematically elucidate the rationality of the examined variables as independent risk factors for sternal wound infection. We searched databases to screen studies, ascertained the variables to be analysed, extracted the data and applied meta-analysis to each qualified variable. Odds ratios and mean differences were considered to be the effect sizes for binary and continuous variables, respectively. A random-effects model was used for these procedures. The source of heterogeneity was evaluated using a meta-regression. Publication bias was tested by funnel plot and Egger's test, the significant results of which were then calculated using trim and fill analysis. We used a sensitivity analysis and bubble chart to describe their robustness. After screening all variables in the eligible literature, we excluded 55 because only one or no research found them significant after multivariate analysis, leaving 33 variables for synthesis. Two binary variables (age over 65 years, NYHA class >2) and a continuous variable (preoperative stay) were not significant after the meta-analysis. The most robust independent risk factors in our study were diabetes mellitus, obesity, use of bilateral internal thoracic arteries, chronic obstructive pulmonary disease, prolonged surgery time, prolonged ventilation and critical preoperative state, followed by congestive heart failure, atrial fibrillation, renal insufficiency, stroke, peripheral vascular disease and use of an intra-aortic balloon pump. Relatively low-risk factors were emergent/urgent surgery, smoking, myocardial infarction, combined surgery and coronary artery bypass grafting. Sternal wound infection after open-heart surgery is a multifactorial disease. The detected risk factors significantly affected the wound healing process, but some were different in strength. Anything that affects wound healing and antibacterial ability, such as lack of oxygen, local haemodynamic disorders, malnutrition condition and compromised immune system will increase the risk, and this reminds us of comprehensive treatment during the perioperative period.

4.
Cell Mol Life Sci ; 80(9): 261, 2023 Aug 19.
Article in English | MEDLINE | ID: mdl-37597099

ABSTRACT

BACKGROUND: The imbalance between osteogenic and adipogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) is not only the primary pathological feature but also a major contributor to the pathogenesis of steroid-induced osteonecrosis of the femoral head (SONFH). Cellular senescence is one of the main causes of imbalanced BMSCs differentiation. The purpose of this study was to reveal whether cellular senescence could participate in the progression of SONFH and the related mechanisms. METHODS: The rat SONFH model was constructed, and rat BMSCs were extracted. Aging-related indicators were detected by SA-ß-Gal staining, qRT-PCR and Western Blot experiments. Using H2O2 to construct a senescent cell model, and overexpressing and knocking down miR-601 and SIRT1 in hBMSCs, the effect on BMSCs differentiation was explored by qRT-PCR, Western Blot experiment, oil red O staining (ORO), alizarin red staining (ARS), and luciferase reporter gene experiment. A rat SONFH model was established to test the effects of miR-601 and metformin in vivo. RESULTS: The current study showed that glucocorticoids (GCs)-induced BMSCs senescence, which caused imbalanced osteogenesis and adipogenesis of BMSCs, was responsible for the SONFH progression. Further, elevated miR-601 caused by GCs was demonstrated to contribute to BMSCs senescence through targeting SIRT1. In addition, the anti-aging drug metformin was shown to be able to alleviate GCs-induced BMSCs senescence and SONFH progression. CONCLUSIONS: Considering the role of BMSCs aging in the progression of SONFH, this provides a new idea for the prevention and treatment of SONFH.


Subject(s)
Mesenchymal Stem Cells , Metformin , MicroRNAs , Osteonecrosis , Animals , Rats , Femur Head , Glucocorticoids , Hydrogen Peroxide , MicroRNAs/genetics , Sirtuin 1/genetics
5.
Cell Rep ; 42(8): 112969, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37573506

ABSTRACT

The differentiation fate of bone marrow mesenchymal stem cells (BMSCs) affects the progression of steroid-induced osteonecrosis of the femoral head (SONFH). We find that lncRNA DGCR5 encodes a 102-amino acid polypeptide, RIP (Rac1 inactivated peptide), which promotes the adipogenic differentiation of BMSCs and aggravates the progression of SONFH. RIP, instead of lncRNA DGCR5, binds to the N-terminal motif of RAC1, and inactivates the RAC1/PAK1 cascade, resulting in decreased Ser675 phosphorylation of ß-catenin. Ultimately, the nuclear localization of ß-catenin decreases, and the differentiation balance of BMSCs tilts toward the adipogenesis lineage. In the femoral head of rats, overexpression of RIP causes trabecular bone disorder and adipocyte accumulation, which can be rescued by overexpressing RAC1. This finding expands the regulatory role of lncRNAs in BMSCs and suggests RIP as a potential therapeutic target.


Subject(s)
Mesenchymal Stem Cells , RNA, Long Noncoding , Rats , Animals , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , beta Catenin/metabolism , Osteogenesis/genetics , Cell Differentiation/genetics , Mesenchymal Stem Cells/metabolism , Peptides/metabolism , Cells, Cultured
6.
Nature ; 619(7971): 819-827, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37438530

ABSTRACT

Understanding protective immunity to COVID-19 facilitates preparedness for future pandemics and combats new SARS-CoV-2 variants emerging in the human population. Neutralizing antibodies have been widely studied; however, on the basis of large-scale exome sequencing of protected versus severely ill patients with COVID-19, local cell-autonomous defence is also crucial1-4. Here we identify phospholipid scramblase 1 (PLSCR1) as a potent cell-autonomous restriction factor against live SARS-CoV-2 infection in parallel genome-wide CRISPR-Cas9 screens of human lung epithelia and hepatocytes before and after stimulation with interferon-γ (IFNγ). IFNγ-induced PLSCR1 not only restricted SARS-CoV-2 USA-WA1/2020, but was also effective against the Delta B.1.617.2 and Omicron BA.1 lineages. Its robust activity extended to other highly pathogenic coronaviruses, was functionally conserved in bats and mice, and interfered with the uptake of SARS-CoV-2 in both the endocytic and the TMPRSS2-dependent fusion routes. Whole-cell 4Pi single-molecule switching nanoscopy together with bipartite nano-reporter assays found that PLSCR1 directly targeted SARS-CoV-2-containing vesicles to prevent spike-mediated fusion and viral escape. A PLSCR1 C-terminal ß-barrel domain-but not lipid scramblase activity-was essential for this fusogenic blockade. Our mechanistic studies, together with reports that COVID-associated PLSCR1 mutations are found in some susceptible people3,4, identify an anti-coronavirus protein that interferes at a late entry step before viral RNA is released into the host-cell cytosol.


Subject(s)
COVID-19 , Phospholipid Transfer Proteins , SARS-CoV-2 , Animals , Humans , Mice , Antibodies, Neutralizing/immunology , Antibodies, Viral/immunology , Chiroptera , COVID-19/immunology , COVID-19/metabolism , COVID-19/prevention & control , COVID-19/virology , Exome Sequencing , Hepatocytes/immunology , Hepatocytes/metabolism , Interferon-gamma/immunology , Lung/immunology , Lung/metabolism , Membrane Fusion , Phospholipid Transfer Proteins/chemistry , Phospholipid Transfer Proteins/genetics , Phospholipid Transfer Proteins/immunology , Phospholipid Transfer Proteins/metabolism , SARS-CoV-2/classification , SARS-CoV-2/immunology , SARS-CoV-2/metabolism , SARS-CoV-2/pathogenicity , Virus Internalization
7.
Stem Cells ; 41(7): 711-723, 2023 Jul 14.
Article in English | MEDLINE | ID: mdl-37210668

ABSTRACT

Enhanced adipogenic differentiation of mesenchymal stem cells (MSCs) is considered as a major risk factor for steroid-induced osteonecrosis of the femoral head (SOFNH). The role of microRNAs during this process has sparked interest. miR-486-5p expression was down-regulated significantly in femoral head bone tissues of both SONFH patients and rat models. The purpose of this study was to reveal the role of miR-486-5p on MSCs adipogenesis and SONFH progression. The present study showed that miR-486-5p could significantly inhibit adipogenesis of 3T3-L1 cells by suppressing mitotic clonal expansion (MCE). And upregulated expression of P21, which was caused by miR-486-5p mediated TBX2 decrease, was responsible for inhibited MCE. Further, miR-486-5p was demonstrated to effectively inhibit steroid-induced fat formation in the femoral head and prevented SONFH progression in a rat model. Considering the potent effects of miR-486-5p on attenuating adipogenesis, it seems to be a promising target for the treatment of SONFH.


Subject(s)
MicroRNAs , Osteonecrosis , Animals , Rats , Adipogenesis/genetics , Cell Differentiation/genetics , Femur Head/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Osteonecrosis/chemically induced , Osteonecrosis/metabolism , Steroids/adverse effects
8.
Mol Carcinog ; 62(7): 1009-1024, 2023 07.
Article in English | MEDLINE | ID: mdl-37042573

ABSTRACT

Pyruvate dehydrogenase kinase 1 (PDK1) is a widely known glycolytic enzyme, and some evidence showed that PDK1 promoted breast cancer by multiple approaches. However, very few lncRNAs have been identified to be associated with PDK1 in breast cancer in previous research. In this study, we found that lncRNA sprouty4-intron transcript 1 (SPRY4-IT1) was regulated by PDK1 with correlation analysis, and PDK1 upregulated SPRY4-IT1 remarkably in breast cancer cells, as PDK1 interacted with SPRY4-IT1 in the nucleus and significantly enhanced the stability of SRPY4-IT1. Furthermore, SPRY4-IT1 was highly expressed in breast cancer, significantly promoted the proliferation and inhibited apoptosis of breast cancer cells. In terms of mechanism, SPRY4-IT1 inhibited the transcription of NFKBIA and the expression of IκBα, thus promoting the formation of p50/p65 complex and activating NF-κB signaling pathway, which facilitated survival of breast cancer cells. Therefore, our finding reveals that PDK1/SPRY4-IT1/NFKBIA axis plays a crucial role that promoting tumor progression, and SPRY4-IT1 knockdown incombined with PDK1 inhibitor is promising to be a new therapeutic strategy in breast cancer.


Subject(s)
Breast Neoplasms , RNA, Long Noncoding , Humans , Female , Breast Neoplasms/genetics , Breast Neoplasms/pathology , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , NF-kappa B/genetics , NF-kappa B/metabolism , Cell Line, Tumor , Introns , Cell Proliferation/genetics , Signal Transduction , Gene Expression Regulation, Neoplastic
10.
Front Immunol ; 13: 967277, 2022.
Article in English | MEDLINE | ID: mdl-36466837

ABSTRACT

Purpose: Fatty acid metabolism (FAM) affects the immune phenotype in a metabolically dynamic tumor microenvironment (TME), but the use of FAM-related genes (FAMGs) to predict the prognosis and immunotherapy response of cutaneous melanoma (CM) patients has not been investigated. In this study, we aimed to construct FAM molecular subtypes and identify key prognostic biomarkers in CM. Methods: We used a CM dataset in The Cancer Genome Atlas (TCGA) to construct FAM molecular subtypes. We performed Kaplan-Meier (K-M) analysis, gene set enrichment analysis (GSEA), and TME analysis to assess differences in the prognosis and immune phenotype between subtypes. We used weighted gene co-expression network analysis (WGCNA) to identify key biomarkers that regulate tumor metabolism and immunity between the subtypes. We compared overall survival (OS), progression-free survival (PFS), and disease-specific survival (DSS) between CM patients with high or low biomarker expression. We applied univariable and multivariable Cox analyses to verify the independent prognostic value of the FAM biomarkers. We used GSEA and TME analysis to investigate the immune-related regulation mechanism of the FAM subtype biomarker. We evaluated the immune checkpoint inhibition (ICI) response and chemotherapy sensitivity between CM patients with high or low biomarker expression. We performed real-time fluorescent quantitative PCR (qRT-PCR) and semi-quantitative analysis of the immunohistochemical (IHC) data from the Human Protein Atlas to evaluate the mRNA and protein expression levels of the FAM biomarkers in CM. Results: We identified 2 FAM molecular subtypes (cluster 1 and cluster 2). K-M analysis showed that cluster 2 had better OS and PFS than cluster 1 did. GSEA showed that, compared with cluster 1, cluster 2 had significantly upregulated immune response pathways. The TME analysis indicated that immune cell subpopulations and immune functions were highly enriched in cluster 2 as compared with cluster 1. WGCNA identified 6 hub genes (ACSL5, ALOX5AP, CD1D, CD74, IL4I1, and TBXAS1) as FAM biomarkers. CM patients with high expression levels of the six biomarkers had better OS, PFS, and DSS than those with low expression levels of the biomarkers. The Cox regression analyses verified that the 6 FAM biomarkers can be independent prognostic factors for CM patients. The single-gene GSEA showed that the high expression levels of the 6 genes were mainly enriched in T-cell antigen presentation, the PD-1 signaling pathway, and tumor escape. The TME analysis confirmed that the FAM subtype biomarkers were not only related to immune infiltration but also highly correlated with immune checkpoints such as PD-1, PD-L1, and CTLA-4. TIDE scores confirmed that patients with high expression levels of the 6 biomarkers had worse immunotherapy responses. The 6 genes conveyed significant sensitivity to some chemotherapy drugs. qRT-PCR and IHC analyses verified the expression levels of the 6 biomarkers in CM cells. Conclusion: Our FAM subtypes verify that different FAM reprogramming affects the function and phenotype of infiltrating immune cells in the CM TME. The FAM molecular subtype biomarkers can be independent predictors of prognosis and immunotherapy response in CM patients.


Subject(s)
Melanoma , Skin Neoplasms , Humans , Melanoma/genetics , Skin Neoplasms/genetics , Programmed Cell Death 1 Receptor , Biomarkers , Fatty Acids , Tumor Microenvironment/genetics , L-Amino Acid Oxidase , Melanoma, Cutaneous Malignant
11.
Neuron ; 110(16): 2607-2624.e8, 2022 08 17.
Article in English | MEDLINE | ID: mdl-35767995

ABSTRACT

Regulatory programs governing neuronal death and axon regeneration in neurodegenerative diseases remain poorly understood. In adult mice, optic nerve crush (ONC) injury by severing retinal ganglion cell (RGC) axons results in massive RGC death and regenerative failure. We performed an in vivo CRISPR-Cas9-based genome-wide screen of 1,893 transcription factors (TFs) to seek repressors of RGC survival and axon regeneration following ONC. In parallel, we profiled the epigenetic and transcriptional landscapes of injured RGCs by ATAC-seq and RNA-seq to identify injury-responsive TFs and their targets. These analyses converged on four TFs as critical survival regulators, of which ATF3/CHOP preferentially regulate pathways activated by cytokines and innate immunity and ATF4/C/EBPγ regulate pathways engaged by intrinsic neuronal stressors. Manipulation of these TFs protects RGCs in a glaucoma model. Our results reveal core transcription programs that transform an initial axonal insult into a degenerative process and suggest novel strategies for treating neurodegenerative diseases.


Subject(s)
Optic Nerve Injuries , Retinal Ganglion Cells , Animals , Axons/metabolism , Mice , Mice, Inbred C57BL , Nerve Regeneration/physiology , Optic Nerve Injuries/metabolism , Retinal Ganglion Cells/physiology
12.
Front Surg ; 9: 964210, 2022.
Article in English | MEDLINE | ID: mdl-36684144

ABSTRACT

Purpose: Advanced cutaneous squamous cell carcinomas (cSCC) can have unclear borders, and simple expanded resection may not only destroy surrounding normal tissues unnecessarily, but can also leave residual tumor cells behind. In this article, we describe a new method for resection and evaluate its accuracy. Methods: The magnetic resonance imaging (MRI) data of 12 patients with advanced cSCC were reconstructed to obtain three-dimensional (3D) tumor models and guide plates for surgeries. Thirty-eight patients with the same cSCC stage, who underwent expanded resection, were included. The distances between the upper, lower, left and right horizontal margins and tumor pathological boundaries were classified as "positive", "close" (0-6 mm), "adequate" (6-12 mm) or "excessive" (>12 mm). The positive margin rate and margin distance were compared between the groups. Results: The 3D tumor models of 12 patients were all successfully reconstructed. The positive rate of 48 surgical margins in the guide plate group was 2.1%, and the proportion of "adequate" margins was 70.8%. A total of 152 margins of 38 patients were included in the extended resection group, for which the positive rate was 13.8%; this was higher than that of the guide plate group (P = 0.045). The proportion of "adequate" margins was 27.6%, with group differences seen in the distance distribution (P < 0.01). Conclusions: In surgical resection of advanced cSCC, compared with simple expanded resection, surgical planning using a 3D tumor model and guide plate can reduce the rate of horizontal surgical margins, and the probability of under- or over-resection.Clinical Trial Registration: http://www.chictr.org.cn, Identifier [No. ChiCTR2100050174].

13.
Bioengineered ; 12(2): 12193-12205, 2021 12.
Article in English | MEDLINE | ID: mdl-34783295

ABSTRACT

Cutaneous melanoma is the leading cause of death among skin cancers despite the availability of diverse treatments. FGD1 plays an important role in multiple cancers, but how it works in cutaneous melanoma has not been illustrated. Thus, this study was intended to investigate the roles of FGD1 and its underlying mechanisms in cutaneous melanoma. Bioinformatics tools and quantitative real-time polymerase chain reaction (qRT-PCR) were used to analyze the expression of FGD1 in cutaneous melanoma. After the knockdown of FGD1 in melanoma cells, the proliferation, migration, and invasion of cells were analyzed by cell counting kit-8 (CCK8) assay, colony formation assays and transwell assays. Western blot was used to check the expression of key factors in PI3K/AKT pathway. In addition, nude mice models were used to study the role of FGD1 in melanoma development and metastasis in vivo. The data demonstrated that FGD1 was up-regulated and predicted a poor clinical outcome for cutaneous melanoma patients. Knockdown of FGD1 inhibited melanoma cell proliferation, migration, and invasion. The expressions of p-PI3K and p-AKT were significantly decreased, while the expressions of PI3K and AKT showed no marked difference in the knockdown group. Meanwhile, knockdown of FGD1 suppressed the development of melanoma in vivo. This study suggested that knockdown of FGD1 could block melanoma formation and proliferation by inhibiting PI3K/AKT signaling pathway. FGD1 might be a promising therapeutic target for melanoma.


Subject(s)
Disease Progression , Gene Silencing , Guanine Nucleotide Exchange Factors/metabolism , Melanoma/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Skin Neoplasms/pathology , Animals , Apoptosis/genetics , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Gene Expression Regulation, Neoplastic , Humans , Lung Neoplasms/secondary , Melanoma/genetics , Mice, Inbred BALB C , Mice, Nude , Prognosis , Skin Neoplasms/genetics , Tumor Stem Cell Assay , Up-Regulation/genetics
14.
Front Oncol ; 11: 735739, 2021.
Article in English | MEDLINE | ID: mdl-34692509

ABSTRACT

BACKGROUND: Histopathological diagnosis of bone tumors is challenging for pathologists. We aim to classify bone tumors histopathologically in terms of aggressiveness using deep learning (DL) and compare performance with pathologists. METHODS: A total of 427 pathological slides of bone tumors were produced and scanned as whole slide imaging (WSI). Tumor area of WSI was annotated by pathologists and cropped into 716,838 image patches of 256 × 256 pixels for training. After six DL models were trained and validated in patch level, performance was evaluated on testing dataset for binary classification (benign vs. non-benign) and ternary classification (benign vs. intermediate vs. malignant) in patch-level and slide-level prediction. The performance of four pathologists with different experiences was compared to the best-performing models. The gradient-weighted class activation mapping was used to visualize patch's important area. RESULTS: VGG-16 and Inception V3 performed better than other models in patch-level binary and ternary classification. For slide-level prediction, VGG-16 and Inception V3 had area under curve of 0.962 and 0.971 for binary classification and Cohen's kappa score (CKS) of 0.731 and 0.802 for ternary classification. The senior pathologist had CKS of 0.685 comparable to both models (p = 0.688 and p = 0.287) while attending and junior pathologists showed lower CKS than the best model (each p < 0.05). Visualization showed that the DL model depended on pathological features to make predictions. CONCLUSION: DL can effectively classify bone tumors histopathologically in terms of aggressiveness with performance similar to senior pathologists. Our results are promising and would help expedite the future application of DL-assisted histopathological diagnosis for bone tumors.

15.
J Zhejiang Univ Sci B ; 22(10): 866-875, 2021 Oct 15.
Article in English | MEDLINE | ID: mdl-34636189

ABSTRACT

Gradual distraction with an external fixator is a widely used treatment for severe postburn ankle contracture (SPAC). However, application of external fixators is complex, and conventional two-dimensional (2D) imaging-based surgical planning is not particularly helpful due to a lack of spatial geometry. The purpose of this study was to evaluate the surgical planning process for this procedure with patient-specific three-dimension-printed models (3DPMs). In this study, patients coming from two centers were divided into two cohorts (3DPM group vs. control group) depending on whether a 3DPM was used for preoperative surgical planning. Operation duration, improvement in metatarsal-tibial angle (MTA), range of motion (ROM), the American Orthopedic Foot and Ankle Society (AOFAS) scores, complications, and patient-reported satisfaction were compared between two groups. The 3DPM group had significantly shorter operation duration than the control group ((2.0±0.3) h vs. (3.2±0.3) h, P<0.01). MTA, ROM, and AOFAS scores between the two groups showed no significant differences pre-operation, after the removal of the external fixator, or at follow-up. Plantigrade feet were achieved and gait was substantially improved in all patients at the final follow-up. Pin-tract infections occurred in two patients (one in each group) during distraction and were treated with wound care and oral antibiotics. Patients in the 3DPM group reported higher satisfaction than those in the control group, owing to better patient-surgeon communication. Surgical planning using patient-specific 3DPMs significantly reduced operation duration and increased patient satisfaction, while providing similar improvements in ankle movement and function compared to traditional surgical planning for the correction of SPAC with external fixators.


Subject(s)
Ankle Joint/surgery , Burns/complications , Contracture/surgery , External Fixators , Printing, Three-Dimensional , Adolescent , Adult , Ankle Joint/physiopathology , Child , Child, Preschool , Contracture/physiopathology , External Fixators/adverse effects , Female , Humans , Male , Middle Aged , Patient Satisfaction , Range of Motion, Articular , Retrospective Studies , Young Adult
16.
Stem Cell Res Ther ; 12(1): 442, 2021 08 06.
Article in English | MEDLINE | ID: mdl-34362437

ABSTRACT

BACKGROUND: Efficient and stable delivery of neurotrophic factors (NTFs) is crucial to provide suitable microenvironment for peripheral nerve regeneration. Neurotrophin-3 (NT-3) is an important NTF during peripheral nerve regeneration which is scarce in the first few weeks of nerve defect. Exosomes are nanovesicles and have been served as promising candidate for biocarrier. In this work, NT-3 mRNA was encapsulated in adipose-derived stem cell (ADSC)-derived exosomes (ExoNT-3). These engineered exosomes were applied as NT-3 mRNA carrier and then were loaded in nerve guidance conduit (ExoNT-3-NGC) to bridge rat sciatic nerve defect. METHOD: NT-3 mRNA was encapsulated in exosomes by forcedly expression of NT-3 mRNA in the donor ADSCs. ExoNT-3 were co-cultured with SCs in vitro; after 24 h of culture, the efficiency of NT-3 mRNA delivery was evaluated by qPCR, western blotting and ELISA. Then, ExoNT-3 were loaded in alginate hydrogel to construct the nerve guidance conduits (ExoNT-3-NGC). ExoNT-3-NGC were implanted in vivo to reconstruct 10 mm rat sciatic nerve defect. The expression of NT-3 was measured 2 weeks after the implantation operation. The sciatic nerve functional index (SFI) was examined at 2 and 8 weeks after the operation. Moreover, the therapeutic effect of ExoNT-3-NGC was also evaluated by morphology assay, immunofluorescence staining of regenerated nerves, function evaluation of gastrocnemius muscles after 8 weeks of implantation. RESULTS: The engineered exosomes could deliver NT-3 mRNA to the recipient cells efficiently and translated into functional protein. The constructed NGC could realize stable release of exosomes at least for 2 weeks. After NGC implantation in vivo, ExoNT-3-NGC group significantly promote nerve regeneration and improve the function recovery of gastrocnemius muscles compared with control exosomes (Exoempty-NGC) group. CONCLUSION: In this work, NGC was constructed to allow exosome-mediated NT-3 mRNA delivery. After ExoNT-3-NGC implantation in vivo, the level of NT-3 could restore which enhance the nerve regeneration. Our study provide a potential approach to improve nerve regeneration.


Subject(s)
Exosomes , Animals , Biomimetics , Nerve Regeneration , Rats , Sciatic Nerve , Stem Cells
17.
Stem Cell Res Ther ; 12(1): 390, 2021 07 13.
Article in English | MEDLINE | ID: mdl-34256859

ABSTRACT

BACKGROUND: Nontraumatic osteonecrosis of the femoral head (NONFH) is a common, progressive, and refractory orthopaedic disease. Decreased osteogenesis and angiogenesis are considered the main factors in the pathogenesis of NONFH. We aimed to figure out whether exosomes and exosomal miRNA from necrotic bone tissues of patients with NONFH are involved in the pathogenesis of NONFH and reveal the underlying mechanisms. METHODS: RT-PCR and western blotting (WB) were used to detect the expression of osteogenic, adipogenic, and angiogenic markers. ALP staining and Alizarin Red S (ARS) staining were used to evaluate osteogenic differentiation of human bone marrow-derived mesenchymal stem cells (hBMSCs). Oil Red O staining was performed to assess the adipocyte deposition. A tube formation assay was used to study angiogenesis of human umbilical vascular endothelial cells (HUVECs). H&E staining and immunohistochemistry (IHC) staining were used to detect the effect of the NONFH exosomes in vivo. MicroRNA sequencing was conducted to identify potential regulators in the NONFH exosomes. The target relationship between miR-100-5p and BMPR2 was predicted and confirmed by a dual luciferase reporter assay and WB. RESULTS: The NONFH exosomes reduced the osteogenic differentiation of hBMSCs and angiogenesis of HUVECs. In addition, the injection of the NONFH exosomes caused thinning and disruption of bone trabeculae in the femoral heads of rats. MiR-100-5p expression was upregulated in the NONFH exosomes and inhibited the osteogenesis of hBMSCs and angiogenesis of HUVECs by targeting BMPR2 and suppressing the BMPR2/SMAD1/5/9 signalling pathway. Silencing miR-100-5p expression rescued the reduction in osteogenesis and angiogenesis caused by the NONFH exosomes by activating the BMPR2/SMAD1/5/9 signalling pathway. CONCLUSION: The NONFH exosomal miR-100-5p can lead to NONFH-like damage by targeting BMPR2 and suppressing the BMPR2/SMAD1/5/9 signalling pathway, which may be involved in the pathophysiological mechanisms of nontraumatic osteonecrosis of the femoral head (NONFH).


Subject(s)
Femur Head Necrosis , MicroRNAs , Animals , Bone Morphogenetic Protein Receptors, Type II , Cell Differentiation , Endothelial Cells , Femur Head , Humans , MicroRNAs/genetics , Osteogenesis/genetics , Rats , Smad1 Protein/genetics
18.
Aesthetic Plast Surg ; 45(5): 2148-2158, 2021 10.
Article in English | MEDLINE | ID: mdl-33821308

ABSTRACT

BACKGROUND: Facial thread-lifting (FTL) has gained more popularity, but the incidences of complications following FTL remain controversial. We aimed to perform a meta-analysis and systematic review to estimate the incidences of complications and to compare the short- and long-term satisfaction rates following FTL. METHODS: We searched PubMed, Web of Science, Embase and Cochrane library for eligible studies. The primary outcome was the incidences of complications following FTL. The secondary outcome was the satisfaction rate immediately and 6-month after FTL. The pooled incidences of complications and 95% confidence intervals were estimated using random-effects models. RESULTS: A total of 26 studies were included in this meta-analysis. Swelling was the most commonly reported complication with a pooled incidence of 35%, followed by skin dimpling (10%), paresthesia (6%), thread visibility/palpability (4%), infection (2%), and thread extrusion (2%). Absorbable threads were associated with a significantly lower risk of paresthesia (3.1% vs. 11.7%) and thread extrusion (1.6% vs. 7.6%) than non-absorbable threads. Patients older than 50 years had a significantly higher risk of dimpling (16% vs. 5.6%) and infection (5.9% vs. 0.7%) than their younger counterparts. In addition, the pooled long-term satisfaction rate was significantly decreased compared to it immediately after FTL (88% vs. 98%). CONCLUSION: Non-absorbable threads and older age of patients are associated with higher risks of complications. Therefore, we recommend a judicious use of non-absorbable threads and FLT in older patients. Furthermore, it should be discussed with patients preoperatively that the rejuvenation effect of FTL may not maintain in the long-term. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .


Subject(s)
Lifting , Rejuvenation , Aged , Face , Humans , Incidence , Treatment Outcome
19.
J Control Release ; 327: 801-833, 2020 11 10.
Article in English | MEDLINE | ID: mdl-32926886

ABSTRACT

Bacterial therapy, which presents a smart platform for delivering and producing therapeutic agents, as monotherapy or in combination with other therapeutic modes, has provided a breakthrough for the treatment of a range of diseases. The integration of synthetic biology technology with bacteria enables their characteristics like chemotaxis and biomolecule secretion to outperform conventional diagnostics and therapeutics, thereby facilitating their clinical applications in a range of diseases. Compared to injection-administered bacteria, orally-delivered bacteria improve patient compliance while avoiding the risk of systemic infections. However, oral administration of microbes always leads to a substantial loss of viability due to the highly acidic environment in the stomach and bile salt in the intestine. Thus, the formulation of these bacteria into microcapsules using appropriate biomaterials is a promising approach for reducing cell death during gastrointestinal passage and controlling the release of these therapeutic cells across the intestinal tract. In this review, we reveal the basic principles of oral bacterial delivery, from internal genetic engineering approaches to external encapsulation and modification, and summarize the most recent biomedical applications. Finally, we discuss future trends in oral bacterial therapy as well as current challenges that need to be resolved to advance their clinical applications.


Subject(s)
Bacteria , Synthetic Biology , Administration, Oral , Capsules , Gastrointestinal Tract , Humans
20.
Burns ; 46(8): 1896-1902, 2020 12.
Article in English | MEDLINE | ID: mdl-32646548

ABSTRACT

OBJECTIVE: We used a smartphone to construct three-dimensional (3D) models of keloids, then quantitatively simulate and evaluate these tissues. METHODS: We uploaded smartphone photographs of 33 keloids on the chest, shoulder, neck, limbs, or abdomen of 28 patients. We used the parallel computing power of a graphics processing unit to calculate the spatial co-ordinates of each pixel in the cloud, then generated 3D models. We obtained the longest diameter, thickness, and volume of each keloid, then compared these data to findings obtained by traditional methods. RESULTS: Measurement repeatability was excellent: intraclass correlation coefficients were 0.998 for longest diameter, 0.978 for thickness, and 0.993 for volume. When measuring the longest diameter and volume, the results agreed with Vernier caliper measurements and with measurements obtained after the injection of water into the cavity. When measuring thickness, the findings were similar to those obtained by ultrasound. Bland-Altman analyses showed that the ratios of 95% confidence interval extremes were 3.03% for longest diameter, 3.03% for volume, and 6.06% for thickness. CONCLUSION: Smartphones were used to acquire data that was then employed to construct 3D models of keloids; these models yielded quantitative data with excellent reliability and validity. The smartphone can serve as an additional tool for keloid diagnosis and research, and will facilitate medical treatment over the internet.


Subject(s)
Imaging, Three-Dimensional/standards , Keloid/diagnostic imaging , Smartphone/standards , Adult , Burns/complications , Burns/diagnostic imaging , China , Female , Humans , Imaging, Three-Dimensional/methods , Imaging, Three-Dimensional/statistics & numerical data , Male , Middle Aged , Reproducibility of Results , Smartphone/instrumentation , Smartphone/statistics & numerical data
SELECTION OF CITATIONS
SEARCH DETAIL
...