Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Ecol Evol ; 14(4): e11279, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38633519

ABSTRACT

Wolbachia, one of the most ubiquitous heritable symbionts in lepidopteran insects, can cause mitochondrial introgression in related host species. We recently found mito-nuclear discordance in the Lepidopteran tribe Tagiadini Mabille 1878 from which Wolbachia has not been reported. In this study, we found that 13 of the 46 species of Tagiadini species tested were positive for Wolbachia. Overall, 14% (15/110) of Tagiadini specimens were infected with Wolbachia and nine new STs were found from 15 isolates. A co-phylogenetic comparison, divergence time estimation and Wolbachia recombination analysis revealed that mito-nuclear discordance in Tagiadini species is not mediated by Wolbachia, but Wolbachia acquisition in Tagiadini appears to have occurred mainly through horizontal transmission rather than codivergence.

2.
Sensors (Basel) ; 23(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36679601

ABSTRACT

The paper studies the secrecy communication threatened by a single eavesdropper in Energy Harvesting (EH)-based cognitive radio networks, where both the Secure User (SU) and the jammer harvest, store, and utilize RF energy from the Primary Transmitter (PT). Our main goal is to optimize the time slots for energy harvesting and wireless communication for both the secure user as well as the jammer to maximize the long-term performance of secrecy communication. A multi-agent Deep Reinforcement Learning (DRL) method is proposed for solving the optimization of resource allocation and performance. Specifically, each sub-channel from the Secure Transmitter (ST) to the Secure Receiver (SR) link, along with the jammer to the eavesdropper link, is regarded as an agent, which is responsible for exploring optimal power allocation strategy while a time allocation network is established to obtain optimal EH time allocation strategy. Every agent dynamically interacts with the wireless communication environment. Simulation results demonstrate that the proposed DRL-based resource allocation method outperforms the existing schemes in terms of secrecy rate, convergence speed, and the average number of transition steps.


Subject(s)
Communication , Resource Allocation , Physical Phenomena , Computer Simulation , Cognition
3.
PLoS One ; 18(1): e0279886, 2023.
Article in English | MEDLINE | ID: mdl-36602985

ABSTRACT

This paper proposes an optimal resource allocation method. The method is to maximize the Energy Efficiency (EE) for an Energy Harvesting (EH) enabled underlay Cognitive Radio (CR) network. First, we assumed the Secondary Users (SUs) can harvest energy from the surrounding Radio Frequency (RF) signals. Then, we modelled the EE maximisation problem as a joint time and power optimization model. Next, the optimal EH time allocation factor can be calculated. After that the optimal power allocation strategy can be obtain by the fractional programming and Lagrange multiplier method. Finally simulation results show that the proposed iterative method can be better performance advantages compared with the exhaustive method and genetic algorithm. And the EE of this system model is significantly improved compared to the EE model without considering EH.


Subject(s)
Radio Waves , Resource Allocation , Physical Phenomena , Computer Simulation , Cognition
4.
Sensors (Basel) ; 22(3)2022 Jan 24.
Article in English | MEDLINE | ID: mdl-35161635

ABSTRACT

In the actual industrial production process, the method of adaptively tuning proportional-integral-derivative (PID) parameters online by neural network can adapt to different characteristics of different controlled objects better than the controller with PID. However, the commonly used microcontroller unit (MCU) cannot meet the application scenarios of real time and high reliability. Therefore, in this paper, a closed-loop motion control system based on BP neural network (BPNN) PID controller by using a Xilinx field programmable gate array (FPGA) solution is proposed. In the design of the controller, it is divided into several sub-modules according to the modular design idea. The forward propagation module is used to complete the forward propagation operation from the input layer to the output layer. The PID module implements the mapping of PID arithmetic to register transfer level (RTL) and is responsible for completing the output of control amount. The main state machine module generates enable signals that control the sequential execution of each sub-module. The error backpropagation and weight update module completes the update of the weights of each layer of the network. The peripheral modules of the control system are divided into two main parts. The speed measurement module completes the acquisition of the output pulse signal of the encoder and the measurement of the motor speed. The pulse width modulation (PWM) signal generation module generates PWM waves with different duty cycles to control the rotation speed of the motor. A co-simulation of Modelsim and Simulink is used to simulate and verify the system, and a test analysis is also performed on the development platform. The results show that the proposed system can realize the self-tuning of PID control parameters, and also has the characteristics of reliable performance, high real-time performance, and strong anti-interference. Compared with MCU, the convergence speed is far more than three orders of magnitude, which proves its superiority.

5.
Sensors (Basel) ; 21(24)2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34960476

ABSTRACT

As part of an Internet of Things (IoT) framework, the Smart Grid (SG) relies on advanced communication technologies for efficient energy management and utilization. Cognitive Radio (CR), which allows Secondary Users (SUs) to opportunistically access and use the spectrum bands owned by Primary Users (PUs), is regarded as the key technology of the next-generation wireless communication. With the assistance of CR technology, the quality of communication in the SG could be improved. In this paper, based on a hybrid CR-enabled SG communication network, a new system architecture for multiband-CR-enabled SG communication is proposed. Then, some optimization mathematical models are also proposed to jointly find the optimal sensing time and the optimal power allocation strategy. By using convex optimization techniques, several optimal methods are proposed to maximize the data rate of multiband-CR-enabled SG while considering the minimum detection probabilities to the active PUs. Finally, simulations are presented to show the validity of the proposed methods.

6.
G3 (Bethesda) ; 11(9)2021 09 06.
Article in English | MEDLINE | ID: mdl-34544126

ABSTRACT

Wolbachia is arguably one of the most ubiquitous heritable symbionts among insects and understanding its transmission dynamics is crucial for understanding why it is so common. While previous research has studied the transmission pathways of Wolbachia in several insect lineages including Lepidoptera, this study takes advantage of data collected from the lepidopteran tribe Aeromachini in an effort to assess patterns of transmission. Twenty-one of the 46 species of Aeromachini species were infected with Wolbachia. Overall, 25% (31/125) of Aeromachini specimens tested were Wolbachia positive. All Wolbachia strains were species-specific except for the wJho strain which appeared to be shared by three host species with a sympatric distribution based on a cophylogenetic comparison between Wolbachia and the Aeromachini species. Two tests of phylogenetic congruence did not find any evidence for cospeciation between Wolbachia strains and their butterfly hosts. The cophylogenetic comparison, divergence time estimation, and Wolbachia recombination analysis revealed that Wolbachia acquisition in Aeromachini appears to have mainly occurred mainly through horizontal transmission rather than codivergence.


Subject(s)
Butterflies , Wolbachia , Animals , Butterflies/genetics , Phylogeny , Recombination, Genetic , Species Specificity , Wolbachia/genetics
7.
Life (Basel) ; 10(11)2020 Oct 25.
Article in English | MEDLINE | ID: mdl-33113860

ABSTRACT

We characterized the gut microbial composition and relative abundance of gut bacteria in the larvae and adults of Pieris canidia by 16S rRNA gene sequencing. The gut microbiota structure was similar across the life stages and sexes. The comparative functional analysis on P. canidia bacterial communities with PICRUSt showed the enrichment of several pathways including those for energy metabolism, immune system, digestive system, xenobiotics biodegradation, transport, cell growth and death. The parameters often used as a proxy of insect fitness (development time, pupation rate, emergence rate, adult survival rate and weight of 5th instars larvae) showed a significant difference between treatment group and untreated group and point to potential fitness advantages with the gut microbiomes in P. canidia. These data provide an overall view of the bacterial community across the life stages and sexes in P. canidia.

8.
Insects ; 11(9)2020 Sep 11.
Article in English | MEDLINE | ID: mdl-32932887

ABSTRACT

The maternally inherited obligate intracellular bacteria Wolbachia infects the reproductive tissues of a wide range of arthropods and affects host reproduction. Wolbachia is a credible biocontrol agent for reducing the impact of diseases associated with arthropod vectors. Paederus fuscipes is a small staphylinid beetle that causes dermatitis linearis and conjunctivitis in humans when they come into contact with skin. Wolbachia occur in this beetle, but their relatedness to other Wolbachia, their infection dynamics, and their potential host effects remain unknown. In this study, we report the phylogenetic position and density dynamics of Wolbachia in P. fuscipes. The phylogeny of Wolbachia based on an analysis of MLST genotyping showed that the bacteria from P. fuscipes belong to supergroup B. Quantitative PCR indicated that the infection density in adults was higher than in any other life stage (egg, larva or pupa), and that reproductive tissue in adults had the highest infection densities, with similar densities in the sexes. These findings provide a starting point for understanding the Wolbachia infection dynamics in P. fuscipes, and interactions with other components of the microbiota.

9.
Math Biosci Eng ; 18(1): 132-153, 2020 11 23.
Article in English | MEDLINE | ID: mdl-33525084

ABSTRACT

Gesture recognition is critical in the field of Human-Computer Interaction, especially in healthcare, rehabilitation, sign language translation, etc. Conventionally, the gesture recognition data collected by the inertial measurement unit (IMU) sensors is relayed to the cloud or a remote device with higher computing power to train models. However, it is not convenient for remote follow-up treatment of movement rehabilitation training. In this paper, based on a field-programmable gate array (FPGA) accelerator and the Cortex-M0 IP core, we propose a wearable deep learning system that is capable of locally processing data on the end device. With a pre-stage processing module and serial-parallel hybrid method, the device is of low-power and low-latency at the micro control unit (MCU) level, however, it meets or exceeds the performance of single board computers (SBC). For example, its performance is more than twice as much of Cortex-A53 (which is usually used in Raspberry Pi). Moreover, a convolutional neural network (CNN) and a multilayer perceptron neural network (NN) is used in the recognition model to extract features and classify gestures, which helps achieve a high recognition accuracy at 97%. Finally, this paper offers a software-hardware co-design method that is worth referencing for the design of edge devices in other scenarios.


Subject(s)
Deep Learning , Wearable Electronic Devices , Equipment Design , Gestures , Humans , Neural Networks, Computer
10.
Zootaxa ; 4565(1): zootaxa.4565.1.8, 2019 Mar 07.
Article in English | MEDLINE | ID: mdl-31716494

ABSTRACT

The butterfly tribe Baorini Doherty, 1886 is a large group of skippers. In this study, a total of 8 genera and 41 species of putative members of this tribe, which represent most of the generic diversity and nearly all the species diversity of the group in China, were sequenced for two mitochondrial genes and three nuclear genes (2084 bp). Phylogenetic relationships and subdivision of this tribe were investigated and the status of the genera are discussed. Partitioned maximum likelihood analyses were performed based on the combined dataset. Our results suggest that the data are split into two well-supported clades in the phylogeny tree. This analysis also represents the most complete phylogenetic analysis of the tribe Baorini in China to date, and includes several genera and species that have been previously excluded from published phylogenies of this group.


Subject(s)
Butterflies , Animals , Cell Nucleus , China , Evolution, Molecular , Genes, Mitochondrial , Phylogeny , Sequence Analysis, DNA
11.
Inorg Chem ; 58(24): 16818-16822, 2019 Dec 16.
Article in English | MEDLINE | ID: mdl-31756094

ABSTRACT

Materials with a low coefficient of thermal expansion (CTE) are extremely demanded in many fields, varying from microelectronics to space technology. Here we report a novel method to achieve low CTE, which differs essentially from the conventional way that uses additives with negative thermal expansion (NTE) to compensate for the positive CTE of the matrix. The stoichiometric Hf0.87Ta0.13Fe2+x (x = 0) shows a giant NTE, which is gradually suppressed with increasing x and finally changed to near-zero thermal expansion (ZTE) at x ≈ 0.4. The excess Fe was suggested to form anti-site defects by occupying the 4f sites. As revealed by electron spin resonance (ESR) spectra, the weakened NTE is closely related to a slower ferromagnetic (FM) ordering process than observed at x = 0. In addition, the CTE can be further tuned by introducing an extra α-Fe phase to achieve a low CTE (e.g., 3.3 ppm/K for x = 1.0) with markedly enhanced mechanical properties, beneficial to applications.

12.
Insects ; 10(5)2019 May 02.
Article in English | MEDLINE | ID: mdl-31052498

ABSTRACT

Wolbachia endosymbiont infections can persist and spread in insect populations without causing apparent effects on reproduction of their insect hosts, but the mechanisms involved are largely unknown. Here, we test for fitness effects of the wAu infection of Drosophila simulans by comparing multiple infected and uninfected polymorphic isofemale lines derived from nature. We show a fitness advantage (higher offspring number) for lines with the wAu Wolbachia infection when breeding on grapes, but only where there was Talaromyces and Penicillium fungal mycelial growth. When breeding on laboratory medium, the wAu infection extended the development time and resulted in larger females with higher fecundity, life history traits, which may increase fitness. A chemical associated with the fungi (ochratoxin A) did not specifically alter the fitness of wAu-infected larvae, which developed slower and emerged with a greater weight regardless of toxin levels. These findings suggest that the fitness benefits of Wolbachia in natural populations may reflect life history changes that are advantageous under particular circumstances, such as when breeding occurs in rotting fruit covered by abundant mycelial growth.

13.
Cells ; 8(4)2019 03 29.
Article in English | MEDLINE | ID: mdl-30934977

ABSTRACT

: The butterfly tribe Aeromachini Tutt, 1906 is a large group of skippers. In this study, a total of 10 genera and 45 species of putative members of this tribe, which represent most of the generic diversity and nearly all the species diversity of the group in China, were sequenced for two mitochondrial genes and three nuclear genes (2093 bp). The combined dataset was analyzed with maximum likelihood inference using IQtree. We found strong support for monophyly of Aeromachini from China and support for the most recent accepted species in the tribe. Two paraphyletic genera within Aeromachini are presented and discussed. The divergence time estimates with BEAST and ancestral-area reconstructions with RASP provide a detailed description about the historical biogeography of the Aeromachini from China. The tribe very likely originated from the Hengduan Mountains in the late Ecocene and expanded to the Himalaya Mountains and Central China Regions. A dispersal-vicariance analysis suggests that dispersal events have played essential roles in the distribution of extant species, and geological and climatic changes have been important factors driving current distribution patterns.


Subject(s)
Butterflies/classification , Phylogeny , Phylogeography , Animals , Bayes Theorem , China , Likelihood Functions , Time Factors
14.
Mol Phylogenet Evol ; 129: 158-170, 2018 12.
Article in English | MEDLINE | ID: mdl-30092356

ABSTRACT

The maternally inherited obligate bacteria Wolbachia is known for infecting the reproductive tissues of a wide range of arthropods and can contribute to phylogenetically discordant patterns between mtDNA and nDNA. In this study, we tested for an association between mito-nuclear discordance in Polytremis and Wolbachia infection. Six of the 17 species of Polytremis were found to be infected with Wolbachia. Overall, 34% (70/204) of Polytremis specimens were Wolbachia positive and three strains of Wolbachia identified using a wsp marker were further characterized as six strains based on MLST markers. Wolbachia acquisition in Polytremis appears to occur mainly through horizontal transmission rather than codivergence based on comparison of the divergence times of Wolbachia and Polytremis species. At the intraspecific level, one of the Wolbachia infections (wNas1) is associated with reduced mtDNA polymorphism in the infected Polytremis population. At the interspecific level, there is one case of mito-nuclear discordance likely caused by introgression of P. fukia mtDNA into P. nascens driven by another Wolbachia strain (wNas3). Based on an absence of infected males, we suspect that one Wolbachia strain (wNas2) affects sex ratio, but the phenotypic effects of the other strains are unclear. These data reveal a dynamic interaction between Polytremis and Wolbachia endosymbionts affecting patterns of mtDNA variation.


Subject(s)
DNA, Mitochondrial/genetics , Genetic Variation , Lepidoptera/genetics , Lepidoptera/microbiology , Wolbachia/physiology , Animals , Cell Nucleus/genetics , China , Female , Geography , Haplotypes/genetics , Likelihood Functions , Male , Multilocus Sequence Typing , Phylogeny , Population Density , Time Factors
15.
Sci Rep ; 6: 20820, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26860271

ABSTRACT

The skipper Polytremis theca species complex is widely distributed in the south of the Qinling Mountains in China. A recent study of the Polytremis genus suggested that this species might encompass two differentiated lineages. We tested this hypothesis, by carrying out a phylogenetic study of this agricultural pest based on nationwide sampling and the evaluation of mitochondrial and nuclear DNA markers. We show that this species is actually an amalgamation of two sibling taxa (P. t. theca and P. t. fukia), which displayed levels of genetic divergence as great as those generally found between sister species in the Polytremis genus, suggesting that they actually correspond to two distinct species. The Divergence time estimates suggest that an active period of speciation within Polytremis occurred within the Pleistocene eras. Based on its distinct phylogenetic placement and geographical isolation, we suggest that the subspecies should be elevated to full species status under the phylogenetic species concept, which has significant management implications.


Subject(s)
Lepidoptera/classification , Lepidoptera/genetics , Phylogeography , Animals , China , Evolution, Molecular , Female , Male , Sequence Analysis, DNA
16.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(4): 2375-6, 2016 07.
Article in English | MEDLINE | ID: mdl-26061339

ABSTRACT

The sequence of the mitochondrial genome (mitogenome) of Polytremis jigongi (Lepidoptera: Hesperiidae) has been presented in this article. It is 15,353 bp in length, with an A + T content of 80.9% containing 13 protein-coding genes, 22 tRNAs, 2 rRNAs, and a noncoding control region (D-loop). All of the 37 typical animal mitochondrial genes were found. All protein-coding genes started with ATN as a start codon except for the gene COX1 that uses CGA as in other lepidopteran species. Five protein-coding genes use incomplete stop codon TA or T, while the others use TAA as stop codons. Most of the tRNA genes can be folded into a typical cloverleaf structure. Nucleotide composition is similar to other insects, showing a high bias toward A + T. Phylogenetic analysis showed that the genome sequence of P. jigongi is close to Hesperiidae.


Subject(s)
Genome, Mitochondrial , Lepidoptera/classification , Lepidoptera/genetics , Animals , Base Composition , Genes, Mitochondrial , Genome Size , Open Reading Frames , Phylogeny , Sequence Analysis, DNA , Whole Genome Sequencing
17.
Mitochondrial DNA A DNA Mapp Seq Anal ; 27(5): 3131-2, 2016 09.
Article in English | MEDLINE | ID: mdl-25690054

ABSTRACT

In this study, the complete mitochondrial DNA (mtDNA) sequence of Polytremis nascens (Lepidoptera: Hesperiidae) was determined. The 15,392 bp mitogenome with GenBank accession number KM981865 contained 13 protein genes, 22 tRNAs, 2 rRNAs, and a non-coding control region (D-loop). All the 37 typical animal mitochondrial genes were found. The overall base composition was 39.7% A, 40.7% T, 7.7% G and 11.9% C, with a high A + T content (80.4%). This complete mitogenome of P. nascens provides a basic data for studies on species identification, molecular systematics and conservation genetics.


Subject(s)
Genome, Mitochondrial , Lepidoptera/genetics , Animals , Insect Proteins/genetics , Lepidoptera/classification , Phylogeny , RNA, Ribosomal/genetics , RNA, Transfer/genetics , Regulatory Sequences, Nucleic Acid
18.
Infect Genet Evol ; 27: 202-11, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25077993

ABSTRACT

The maternally inherited obligate bacteria Wolbachia is known for infecting the reproductive tissues of a wide range of arthropods. In this study, we surveyed Wolbachia infections in Polytremis nascens (Lepidoptera: Hesperiidae) from 14 locations in China by amplifying the 16S rRNA gene with a nested PCR method and revealed the effect of Wolbachia on host mitochondrial DNA. The results show that 31% (21/67) are Wolbachia positive among all specimens and mainly prevails in southern populations in China. No significant difference in the prevalence is found between the sexes. Notably, the nucleotide diversity of Wolbachia infected butterflies is smaller compared to that of uninfected butterflies. The mitochondrial DNA of infected group appear to be not evolving neutrally (Tajima's D value=-2.3303 and Fu's F values=-3.7068). The analysis of molecular variance shows significant differentiation of mitochondrial haplotypes between infected and uninfected specimens (FST=0.6064). The mismatch analysis speculated the different expansion pattern in Wolbachia infected specimens and all P. nascens specimens. These results suggest that the populations of P. nascens may have recently been subjected to a Wolbachia-induced sweep. Additionally, phylogenetic analysis differentiated the mitochondrial haplotypes of P. nascens into three major clades. The clades are in perfect agreement with the pattern of Wolbachia infection. One of the clades grouped with the butterflies infected with Wolbachia. The remaining two clades grouped with uninfected butterflies from the central-west of China populations and Eastern and Southern China populations respectively, which are isolated mainly by the Yangtze River. The analysis of haplotype networks, geographic distribution and population size change shows that Haplotype 1 in central-west of China is the ancestral haplotype and the populations of P. nascens are expanded.


Subject(s)
Lepidoptera/genetics , Lepidoptera/microbiology , Wolbachia , Animals , China , DNA, Mitochondrial , Evolution, Molecular , Genetic Structures , Genetic Variation , Genetics, Population , Geography , Host-Pathogen Interactions/genetics , Lepidoptera/classification , Molecular Sequence Data , Phylogeny , RNA, Ribosomal, 16S
19.
J Parasitol ; 100(4): 542-6, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24611571

ABSTRACT

The family Taeniidae comprises many parasitic species, which cause serious zoonoses. However, effective identification of Taeniidae species is a long-standing problem, especially in samples from wild hosts with mixed infections of different Taeniidae species. DNA barcoding analysis of small fragments of the cytochrome c oxidase subunit I (COI) gene has been confirmed as an effective and useful method for identifying Taenia species. We therefore performed DNA barcoding analysis using a 351-bp region of the COI gene to identify 27 taeniid species including 9 in the genus Echinococcus, 2 in Hydatigera, 15 in Taenia, and 1 in Versteria. A total of 484 COI sequences were used to calculate genetic divergence expressed by the Kimura 2-parameter (K2P) distance. The mean intra-specific K2P distance in the family Taeniidae was 0.71 ± 0.17% (±SE), while inter-specific divergences were considerably higher. We found that, generally, a 2.0% optimal barcoding threshold could be set to distinguish taeniid species. Taenia polyacantha and Hydatigera taeniaeformis were the only 2 false-positive species identification cases in this study for their intra-specific divergences above the 2.0% optimal threshold. Their high intra-specific divergences coincided with fact that cryptic divergences exist in these 2 species, to which new taxa were recommended. On the other hand, sister species T. asiatica and T. saginata showed a 2.48 ± 0.83% inter-specific divergence, which was the smallest among all the taeniid species. Although fitting the 2.0% optimal species barcoding threshold, the close genetic relationship between T. asiatica and T. saginata implies that longer mitochondrial DNA sequences like the complete COI sequence are needed to strictly distinguish them. Therefore, we concluded that the barcoding technique based on a 351-bp region of the COI gene is able to distinguish taeniid species except for cryptic T. polyacantha and H. taeniaeformis and should be carefully used in distinguishing the closely related species T. asiatica and T. saginata .


Subject(s)
Cestoda/classification , DNA Barcoding, Taxonomic/standards , Animals , Cestoda/genetics , Cestoda/isolation & purification , DNA Barcoding, Taxonomic/methods , Electron Transport Complex IV/genetics , Haplotypes
20.
PLoS One ; 8(12): e84098, 2013.
Article in English | MEDLINE | ID: mdl-24391893

ABSTRACT

BACKGROUND: The genus Polytremis, restricted to the continental part of the southeastern Palaearctic and northern Oriental regions, is one of the largest and most diverse lineages of the tribe Baorini. Previous studies on the genus were focused mainly on morphological classification and identification of new species. Due to the lack of effective and homologous traits of morphology, there were many challenges in the traditional classification. In this report, we reconstruct the phylogeny to provide a solid framework for these studies and to test the traditional limits and relationships of taxa. METHODOLOGY AND PRINCIPAL FINDINGS: We sequenced a mitochondrial and three nuclear gene fragments, coupled with an evaluation of traditional morphological characters, to determine the phylogenetic relationships for a total of 15 species representing all major species groups of the Polytremis genus in China, and to elucidate their taxonomic status. CONCLUSIONS AND SIGNIFICANCE: Analysis of mitochrondial and nuclear DNA showed considerable congruent phylogenetic signal in topology at the inter-species level. We found strong support for the monophyly of Polytremis and some clades were recognized with morphological data. Thus, the COI sequence in our study could be used as a DNA barcode to identify almost all members of the genus. However, incongruences of phylogenetic analyses occurred: in contrast to the phylogenetic trees of mitochondrial COI, it was not possible for nuclear rDNA to discriminate P. gotama from P. caerulescens, suggesting a possible recent separation of these two species. Additionally, P. theca was the only species with a greater intra-specific genetic distance compared to some inter-specific genetic distances in this study and some problems associated with the cryptic diversity of the species are discussed. The results of this study will helpful to reveal the causes of the high degree of diversity of butterflies, and possibly other groups of insects in China.


Subject(s)
Butterflies/genetics , Cell Nucleus/genetics , DNA, Mitochondrial/genetics , Electron Transport Complex IV/genetics , Evolution, Molecular , Phylogeny , Animals , China , DNA, Intergenic/genetics , Genetic Variation , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...