Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
1.
Dev Cogn Neurosci ; 63: 101284, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37517139

ABSTRACT

Human brain undergoes rapid growth during the first few years of life. While previous research has employed graph theory to study early brain development, it has mostly focused on the topological attributes of the whole brain. However, examining regional graph-theory features may provide unique insights into the development of cognitive abilities. Utilizing a large and longitudinal rsfMRI dataset from the UNC/UMN Baby Connectome Project, we investigated the developmental trajectories of regional efficiency and evaluated the relationships between these changes and cognitive abilities using Mullen Scales of Early Learning during the first twenty-eight months of life. Our results revealed a complex and spatiotemporally heterogeneous development pattern of regional global and local efficiency during this age period. Furthermore, we found that the trajectories of the regional global efficiency at the left temporal occipital fusiform and bilateral occipital fusiform gyri were positively associated with cognitive abilities, including visual reception, expressive language, receptive language, and early learning composite scores (P < 0.05, FDR corrected). However, these associations were weakened with age. These findings offered new insights into the regional developmental features of brain topologies and their associations with cognition and provided evidence of ongoing optimization of brain networks at both whole-brain and regional levels.


Subject(s)
Connectome , Magnetic Resonance Imaging , Humans , Brain , Cognition , Connectome/methods , Language , Brain Mapping
2.
Front Psychiatry ; 14: 1310323, 2023.
Article in English | MEDLINE | ID: mdl-38179243

ABSTRACT

Generalized Anxiety Disorder (GAD) is a prevalent mental disorder on the rise in modern society. It is crucial to achieve precise diagnosis of GAD for improving the treatments and averting exacerbation. Although a growing number of researchers beginning to explore the deep learning algorithms for detecting mental disorders, there is a dearth of reports concerning precise GAD diagnosis. This study proposes a multi-scale spatial-temporal local sequential and global parallel convolutional model, named MSTCNN, which designed to achieve highly accurate GAD diagnosis using high-frequency electroencephalogram (EEG) signals. To this end, 10-min resting EEG data were collected from 45 GAD patients and 36 healthy controls (HC). Various frequency bands were extracted from the EEG data as the inputs of the MSTCNN. The results demonstrate that the proposed MSTCNN, combined with the attention mechanism of Squeeze-and-Excitation Networks, achieves outstanding classification performance for GAD detection, with an accuracy of 99.48% within the 4-30 Hz EEG data, which is competitively related to state-of-art methods in terms of GAD classification. Furthermore, our research unveils an intriguing revelation regarding the pivotal role of high-frequency band in GAD diagnosis. As the frequency band increases, diagnostic accuracy improves. Notably, high-frequency EEG data ranging from 10-30 Hz exhibited an accuracy rate of 99.47%, paralleling the performance of the broader 4-30 Hz band. In summary, these findings move a step forward towards the practical application of automatic diagnosis of GAD and provide basic theory and technical support for the development of future clinical diagnosis system.

3.
Sensors (Basel) ; 22(11)2022 May 30.
Article in English | MEDLINE | ID: mdl-35684782

ABSTRACT

Many existing fault diagnosis methods based on deep learning (DL) require numerous fault samples to train the diagnosis model. However, in industrial applications, rotating machines (RMs) operate in normal states for most of their service life with fault events being rare and thus failure samples are very limited. To solve the problem above, a novel wide residual relation network (WRRN) is proposed for intelligent fault diagnosis of the RMs. Specifically, the WRRN is trained by performing a series of learning tasks in RMs with sufficient samples to obtain knowledge about how to diagnose, and then it is directly transferred to realize fault task of the RM with small samples. In this method, a wide residual network-based feature extraction module is used to generate representative fault features from input samples, and a relation module is designed to calculate the relation score between the sample pairs so as to determine their categories. Extensive experiments are conducted on two RMs to validate the WRRN method. The results demonstrate that the WRRN can accurately identify the fault types of the RMs with only small samples or even one sample. The WRRN significantly outperforms the existing popular methods in diagnostic performance.


Subject(s)
Intelligence , Knowledge , Disease Progression , Humans
4.
Brain Commun ; 4(3): fcac112, 2022.
Article in English | MEDLINE | ID: mdl-35602654

ABSTRACT

Prenatal opioid exposure has been linked to adverse effects spanning multiple neurodevelopmental domains, including cognition, motor development, attention, and vision. However, the neural basis of these abnormalities is largely unknown. A total of 49 infants, including 21 opioid-exposed and 28 controls, were enrolled and underwent MRI (43 ± 6 days old) after birth, including resting state functional MRI. Edge-centric functional networks based on dynamic functional connections were constructed, and machine-learning methods were employed to identify neural features distinguishing opioid-exposed infants from unexposed controls. An accuracy of 73.6% (sensitivity 76.25% and specificity 69.33%) was achieved using 10 times 10-fold cross-validation, which substantially outperformed those obtained using conventional static functional connections (accuracy 56.9%). More importantly, we identified that prenatal opioid exposure preferentially affects inter- rather than intra-network dynamic functional connections, particularly with the visual, subcortical, and default mode networks. Consistent results at the brain regional and connection levels were also observed, where the brain regions and connections associated with visual and higher order cognitive functions played pivotal roles in distinguishing opioid-exposed infants from controls. Our findings support the clinical phenotype of infants exposed to opioids in utero and may potentially explain the higher rates of visual and emotional problems observed in this population. Finally, our findings suggested that edge-centric networks could better capture the neural differences between opioid-exposed infants and controls by abstracting the intrinsic co-fluctuation along edges, which may provide a promising tool for future studies focusing on investigating the effects of prenatal opioid exposure on neurodevelopment.

5.
Neuroimage Clin ; 33: 102917, 2022.
Article in English | MEDLINE | ID: mdl-34929585

ABSTRACT

The human brain is not only efficiently but also "redundantly" connected. The redundancy design could help the brain maintain resilience to disease attacks. This paper explores subnetwork-level redundancy dynamics and the potential of such metrics in disease studies. As such, we looked into specific functional subnetworks, including those associated with high-level functions. We investigated how the subnetwork redundancy dynamics change along with Alzheimer's disease (AD) progression and with major depressive disorder (MDD), two major disorders that could share similar subnetwork alterations. We found an increased dynamic redundancy of the subcortical-cerebellum subnetwork and its connections to other high-order subnetworks in the mild cognitive impairment (MCI) and AD compared to the normal control (NC). With gained spatial specificity, we found such a redundancy index was sensitive to disease symptoms and could act as a protective mechanism to prevent the collapse of the brain network and functions. The dynamic redundancy of the medial frontal subnetwork and its connections to the frontoparietal subnetwork was also found decreased in MDD compared to NC. The spatial specificity of the redundancy dynamics changes may provide essential knowledge for a better understanding of shared neural substrates in AD and MDD.


Subject(s)
Alzheimer Disease , Cognitive Dysfunction , Depressive Disorder, Major , Alzheimer Disease/diagnostic imaging , Brain/diagnostic imaging , Cognitive Dysfunction/diagnostic imaging , Depression , Depressive Disorder, Major/diagnostic imaging , Humans , Magnetic Resonance Imaging
6.
Dev Cogn Neurosci ; 51: 100996, 2021 10.
Article in English | MEDLINE | ID: mdl-34388637

ABSTRACT

Prenatal opioid exposure has been linked to altered neurodevelopment and visual problems such as strabismus and nystagmus. The neural substrate underlying these alterations is unclear. Resting-state functional connectivity MRI (rsfMRI) is an advanced and well-established technique to evaluate brain networks. Few studies have examined the effects of prenatal opioid exposure on resting-state network connectivity in infancy. In this pilot study, we characterized network connectivity in opioid-exposed infants (n = 19) and controls (n = 20) between 4-8 weeks of age using both a whole-brain connectomic approach and a seed-based approach. Prenatal opioid exposure was associated with differences in distribution of betweenness centrality and connection length, with positive connections unique to each group significantly longer than common connections. The unique connections in the opioid-exposed group were more often inter-network connections while unique connections in controls and connections common to both groups were more often intra-network. The opioid-exposed group had smaller network volumes particularly in the primary visual network, but similar network strength as controls. Network topologies as determined by dice similarity index were different between groups, particularly in visual and executive control networks. These results may provide insight into the neural basis for the developmental and visual problems associated with prenatal opioid exposure.


Subject(s)
Analgesics, Opioid , Connectome , Analgesics, Opioid/toxicity , Brain , Brain Mapping , Female , Humans , Infant , Magnetic Resonance Imaging , Neural Pathways , Pilot Projects , Pregnancy
7.
Hum Brain Mapp ; 42(2): 329-344, 2021 02 01.
Article in English | MEDLINE | ID: mdl-33064332

ABSTRACT

Antisocial behavior (ASB) is believed to have neural substrates; however, the association between ASB and functional brain networks remains unclear. The temporal variability of the functional connectivity (or dynamic FC) derived from resting-state functional MRI has been suggested as a useful metric for studying abnormal behaviors including ASB. This is the first study using low-frequency fluctuations of the dynamic FC to unravel potential system-level neural correlates with ASB. Specifically, we individually associated the dynamic FC patterns with the ASB scores (measured by Antisocial Process Screening Device) of the male offenders (age: 23.29 ± 3.36 years) based on machine learning. Results showed that the dynamic FCs were associated with individual ASB scores. Moreover, we found that it was mainly the inter-network dynamic FCs that were negatively associated with the ASB severity. Three major high-order cognitive functional networks and the sensorimotor network were found to be more associated with ASB. We further found that impaired behavior in the ASB subjects was mainly associated with decreased FC dynamics in these networks, which may explain why ASB subjects usually have impaired executive control and emotional processing functions. Our study shows that temporal variation of the FC could be a promising tool for ASB assessment, treatment, and prevention.


Subject(s)
Antisocial Personality Disorder/diagnostic imaging , Antisocial Personality Disorder/psychology , Brain/diagnostic imaging , Nerve Net/diagnostic imaging , Adolescent , Adult , Humans , Magnetic Resonance Imaging/methods , Male , Young Adult
8.
Sensors (Basel) ; 20(18)2020 Sep 04.
Article in English | MEDLINE | ID: mdl-32899829

ABSTRACT

Detection technology of underwater pipeline leakage plays an important role in the subsea production system. In this paper, a new method based on the acoustic leak signal collected by a hydrophone is proposed to detect pipeline leakage in the subsea production system. Through the pipeline leakage test, it is found that the radiation noise is a continuous spectrum of the medium and high-frequency noise. Both the increase in pipe pressure and the diameter of the leak hole will narrow the spectral structure and shift the spectrum center towards the low frequencies. Under the same condition, the pipe pressure has a greater impact on the noise; every 0.05 MPa increase in the pressure, the radiation sound pressure level increases by 6-7 dB. The time-frequency images were obtained by processing the acoustic signals using the Ensemble Empirical Mode Decomposition (EEMD) and Hilbert-Huang transform (HHT), and fed into a two-layer Convolutional Neural Network (CNN) for leakage detection. The results show that CNN can correctly identify the degree of pipeline leakage. Hence, the proposed method provides a new approach for the detection of pipeline leakage in underwater engineering applications.

9.
Gen Psychiatr ; 32(2): e100005, 2019.
Article in English | MEDLINE | ID: mdl-31179429

ABSTRACT

BACKGROUND: With an aggravated social ageing level, the number of patients with Alzheimer's disease (AD) is gradually increasing, and mild cognitive impairment (MCI) is considered to be an early form of Alzheimer's disease. How to distinguish diseases in the early stage for the purposes of early diagnosis and treatment is an important topic. AIMS: The purpose of our study was to investigate the differences in brain cortical thickness and surface area among elderly patients with AD, elderly patients with amnestic MCI (aMCI) and normal controls (NC). METHODS: 20 AD patients, 21 aMCIs and 25 NC were recruited in the study. FreeSurfer software was used to calculate cortical thickness and surface area among groups. RESULTS: The patients with AD had less cortical thickness both in the left and right hemisphere in 17 of the 36 brain regions examined than the patients with aMCI or NC. The patients with AD also had smaller cerebral surface area both in the left and right hemisphere in 3 of the 36 brain regions examined than the patients with aMCI or NC. Compared with the NC, the patients with aMCI only had slight atrophy in the inferior parietal lobe of the left hemisphere, and no significant difference was found. CONCLUSION: AD, as well as aMCI (to a lesser extent), is associated with reduced cortical thickness and surface area in a few brain regions associated with cognitive impairment. These results suggest that cortical thickness and surface area could be used for early detection of AD.

10.
Sci Rep ; 7: 43002, 2017 02 22.
Article in English | MEDLINE | ID: mdl-28223713

ABSTRACT

Emerging neuroimaging research suggests that antisocial personality disorder (ASPD) may be linked to abnormal brain anatomy, but little is known about possible impairments of white matter microstructure in ASPD, as well as their relationship with impulsivity or risky behaviors. In this study, we systematically investigated white matter abnormalities of ASPD using diffusion tensor imaging (DTI) measures: fractional anisotropy (FA), axial diffusivity (AD), and radial diffusivity (RD). Then, we further investigated their correlations with the scores of impulsivity or risky behaviors. ASPD patients showed decreased FA in multiple major white matter fiber bundles, which connect the fronto-parietal control network and the fronto-temporal network. We also found AD/RD deficits in some additional white matter tracts that were not detected by FA. More interestingly, several regions were found correlated with impulsivity or risky behaviors in AD and RD values, although not in FA values, including the splenium of corpus callosum, left posterior corona radiate/posterior thalamic radiate, right superior longitudinal fasciculus, and left inferior longitudinal fasciculus. These regions can be the potential biomarkers, which would be of great interest in further understanding the pathomechanism of ASPD.


Subject(s)
Antisocial Personality Disorder/diagnosis , Diffusion Tensor Imaging , White Matter/diagnostic imaging , Adult , Brain Mapping , Case-Control Studies , Female , Humans , Image Processing, Computer-Assisted , Male , Neuropsychological Tests , White Matter/physiology , Young Adult
11.
Brain Imaging Behav ; 11(4): 1071-1084, 2017 08.
Article in English | MEDLINE | ID: mdl-27541949

ABSTRACT

Studies on antisocial personality disorder (ASPD) subjects focus on brain functional alterations in relation to antisocial behaviors. Neuroimaging research has identified a number of focal brain regions with abnormal structures or functions in ASPD. However, little is known about the connections among brain regions in terms of inter-regional whole-brain networks in ASPD patients, as well as possible alterations of brain functional topological organization. In this study, we employ resting-state functional magnetic resonance imaging (R-fMRI) to examine functional connectome of 32 ASPD patients and 35 normal controls by using a variety of network properties, including small-worldness, modularity, and connectivity. The small-world analysis reveals that ASPD patients have increased path length and decreased network efficiency, which implies a reduced ability of global integration of whole-brain functions. Modularity analysis suggests ASPD patients have decreased overall modularity, merged network modules, and reduced intra- and inter-module connectivities related to frontal regions. Also, network-based statistics show that an internal sub-network, composed of 16 nodes and 16 edges, is significantly affected in ASPD patients, where brain regions are mostly located in the fronto-parietal control network. These results suggest that ASPD is associated with both reduced brain integration and segregation in topological organization of functional brain networks, particularly in the fronto-parietal control network. These disruptions may contribute to disturbances in behavior and cognition in patients with ASPD. Our findings may provide insights into a deeper understanding of functional brain networks of ASPD.


Subject(s)
Antisocial Personality Disorder/diagnostic imaging , Antisocial Personality Disorder/physiopathology , Brain/diagnostic imaging , Brain/physiopathology , Connectome , Magnetic Resonance Imaging , Criminals , Humans , Male , Neural Pathways/diagnostic imaging , Neural Pathways/physiopathology , Rest , Young Adult
12.
Sci Rep ; 6: 35905, 2016 10 25.
Article in English | MEDLINE | ID: mdl-27779211

ABSTRACT

Brain responses to facial attractiveness induced by facial proportions are investigated by using functional magnetic resonance imaging (fMRI), in 41 young adults (22 males and 19 females). The subjects underwent fMRI while they were presented with computer-generated, yet realistic face images, which had varying facial proportions, but the same neutral facial expression, baldhead and skin tone, as stimuli. Statistical parametric mapping with parametric modulation was used to explore the brain regions with the response modulated by facial attractiveness ratings (ARs). The results showed significant linear effects of the ARs in the caudate nucleus and the orbitofrontal cortex for all of the subjects, and a non-linear response profile in the right amygdala for only the male subjects. Furthermore, canonical correlation analysis was used to learn the most relevant facial ratios that were best correlated with facial attractiveness. A regression model on the fMRI-derived facial ratio components demonstrated a strong linear relationship between the visually assessed mean ARs and the predictive ARs. Overall, this study provided, for the first time, direct neurophysiologic evidence of the effects of facial ratios on facial attractiveness and suggested that there are notable gender differences in perceiving facial attractiveness as induced by facial proportions.


Subject(s)
Amygdala/physiology , Caudate Nucleus/physiology , Facial Recognition , Prefrontal Cortex/physiology , Adult , Brain Mapping , Facial Expression , Female , Humans , Magnetic Resonance Imaging , Male , Pattern Recognition, Visual , Young Adult
13.
Neuroscience ; 337: 143-152, 2016 Nov 19.
Article in English | MEDLINE | ID: mdl-27600947

ABSTRACT

Antisocial personality disorder (ASPD), one of whose characteristics is high impulsivity, is of great interest in the field of brain structure and function. However, little is known about possible impairments in the cortical anatomy in ASPD, in terms of cortical thickness (CTh) and surface area (SA), as well as their possible relationship with impulsivity. In this neuroimaging study, we first investigated the changes of CTh and SA in ASPD patients, in comparison to those of healthy controls, and then performed correlation analyses between these measures and the ability of impulse control. We found that ASPD patients showed thinner cortex while larger SA in several specific brain regions, i.e., bilateral superior frontal gyrus (SFG), orbitofrontal and triangularis, insula cortex, precuneus, middle frontal gyrus (MFG), middle temporal gyrus (MTG), and left bank of superior temporal sulcus (STS). In addition, we also found that the ability of impulse control was positively correlated with CTh in the SFG, MFG, orbitofrontal cortex (OFC), pars triangularis, superior temporal gyrus (STG), and insula cortex. To our knowledge, this study is the first to reveal simultaneous changes in CTh and SA in ASPD, as well as their relationship with impulsivity. These cortical structural changes may introduce uncontrolled and callous behavioral characteristic in ASPD patients, and these potential biomarkers may be very helpful in understanding the pathomechanism of ASPD.


Subject(s)
Antisocial Personality Disorder/pathology , Cerebral Cortex/pathology , Impulsive Behavior/physiology , Adolescent , Adult , Antisocial Personality Disorder/physiopathology , Brain Mapping , Female , Humans , Magnetic Resonance Imaging/methods , Male , Young Adult
14.
Front Aging Neurosci ; 8: 112, 2016.
Article in English | MEDLINE | ID: mdl-27242521

ABSTRACT

UNLABELLED: MicroRNA107 (Mir107) has been thought to relate to the brain structure phenotype of Alzheimer's disease. In this study, we evaluated the cortical anatomy in amnestic mild cognitive impairment (aMCI) and the relation between cortical anatomy and plasma levels of Mir107 and beta-site amyloid precursor protein (APP) cleaving enzyme 1 (BACE1). Twenty aMCI (20 aMCI) and 24 cognitively normal control (NC) subjects were recruited, and T1-weighted MR images were acquired. Cortical anatomical measurements, including cortical thickness (CT), surface area (SA), and local gyrification index (LGI), were assessed. Quantitative RT-PCR was used to examine plasma expression of Mir107, BACE1 mRNA. Thinner cortex was found in aMCI in areas associated with episodic memory and language, but with thicker cortex in other areas. SA decreased in aMCI in the areas associated with working memory and emotion. LGI showed a significant reduction in aMCI in the areas involved in language function. Changes in Mir107 and BACE1 messenger RNA plasma expression were correlated with changes in CT and SA. We found alterations in key left brain regions associated with memory, language, and emotion in aMCI that were significantly correlated with plasma expression of Mir107 and BACE1 mRNA. This combination study of brain anatomical alterations and gene information may shed lights on our understanding of the pathology of AD. CLINICAL TRIAL REGISTRATION: http://www.ClinicalTrials.gov, identifier NCT01819545.

15.
Neuroreport ; 26(12): 675-80, 2015 Aug 19.
Article in English | MEDLINE | ID: mdl-26164454

ABSTRACT

There has been increasing interest in multivariate pattern analysis (MVPA) as a means of distinguishing psychiatric patients from healthy controls using brain imaging. However, it remains unclear whether MVPA methods can accurately estimate the medication status of psychiatric patients. This study aims to develop an MVPA approach to accurately predict the antidepressant medication status of individuals with major depression on the basis of whole-brain resting-state functional connectivity MRI (rs-fcMRI). We investigated data from rs-fcMRI of 24 medication-naive depressed patients, 16 out of whom subsequently underwent antidepressant treatment and achieved clinical recovery, and 29 demographically similar controls. By training a linear support vector machine classifier and combining it with principal component analysis, the medication-naive patients were identified from the healthy controls with 100% accuracy. In addition, we found reliable correlations between MVPA prediction scores and clinical symptom severity. Moreover, the most discriminative functional connections were located within or across the cerebellum and default mode, affective, and sensorimotor networks, indicating that these networks may play important roles in major depression. Most importantly, only ∼30% of these discriminative connections were normalized in clinically recovered patients after antidepressant treatment. The current study may not only show the feasibility of estimating medication status by MVPA of whole-brain rs-fcMRI data in major depression but also shed new light on the pathological mechanism of this disorder.


Subject(s)
Brain/metabolism , Depressive Disorder, Major/diagnosis , Depressive Disorder, Major/metabolism , Nerve Net/metabolism , Adult , Brain/pathology , Brain Mapping/methods , Depressive Disorder, Major/psychology , Female , Follow-Up Studies , Humans , Magnetic Resonance Imaging/methods , Male , Nerve Net/pathology , Predictive Value of Tests , Treatment Outcome , Young Adult
16.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 40(2): 123-8, 2015 Feb.
Article in Chinese | MEDLINE | ID: mdl-25769320

ABSTRACT

OBJECTIVE: To investigate the structural abnormalities of brain in patients with antisocial personality disorder (ASPD) but without alcoholism and drug abuse. METHODS: Volunteers from Hunan Reformatory (n=36) and the matched healthy subjects (n=26) were examined by high-spatial resolution magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Voxel-based morphometry and fractional anisotropy (FA) maps were generated for each subject to reveal structural abnormalities in patients with ASPD. RESULTS: Compared with the healthy controls, ASPD patients showed significantly higher gray matter volumes in the inferior parietal lobule (P≤0.001, uncorrected), white matter volumes in the precuneus (P≤0.001, uncorrected), FA in the left lingual gyrus, bilateral precuneus, right superior frontal gyrus and right middle temporal gyrus (P≤0.01, uncorrected). CONCLUSION: Our results revealed the abnormal neuroanatomical features in ASPD patients, which might be related to the external behavioral traits in ASPD patients.


Subject(s)
Antisocial Personality Disorder/diagnosis , Brain/anatomy & histology , Magnetic Resonance Imaging , Anisotropy , Case-Control Studies , Diffusion Tensor Imaging , Humans
17.
Behav Brain Funct ; 11: 1, 2015 Jan 17.
Article in English | MEDLINE | ID: mdl-25595193

ABSTRACT

BACKGROUND: Previous functional MRI (fMRI) studies have demonstrated group differences in brain activity between deceptive and honest responses. The functional connectivity network related to lie-telling remains largely uncharacterized. METHODS: In this study, we designed a lie-telling experiment that emphasized strategy devising. Thirty-two subjects underwent fMRI while responding to questions in a truthful, inverse, or deceitful manner. For each subject, whole-brain functional connectivity networks were constructed from correlations among brain regions for the lie-telling and truth-telling conditions. Then, a multivariate pattern analysis approach was used to distinguish lie-telling from truth-telling based on the functional connectivity networks. RESULTS: The classification results demonstrated that lie-telling could be differentiated from truth-telling with an accuracy of 82.81% (85.94% for lie-telling, 79.69% for truth-telling). The connectivities related to the fronto-parietal networks, cerebellum and cingulo-opercular networks are most discriminating, implying crucial roles for these three networks in the processing of deception. CONCLUSIONS: The current study may shed new light on the neural pattern of deception from a functional integration viewpoint.


Subject(s)
Deception , Magnetic Resonance Imaging/methods , Nerve Net/physiology , Neural Pathways/physiology , Brain Mapping , Cerebellum/physiology , Female , Frontal Lobe/physiology , Generalization, Psychological , Gyrus Cinguli/physiology , Humans , Image Processing, Computer-Assisted , Male , Parietal Lobe/physiology , Reaction Time , Young Adult
18.
Zhong Nan Da Xue Xue Bao Yi Xue Ban ; 39(9): 975-80, 2014 Sep.
Article in Chinese | MEDLINE | ID: mdl-25269511

ABSTRACT

As a widely recognized public health problem as well as prevalent and challenging to modern society, chronic insomnia is involved in wide brain areas (such as prefrontal cortex, anterior cingulate cortex, amygdala, hippocampus, and thalamus) and emotion-cognition neuro-circuit. It is closely related to the conditioned hyperarousal and the increased information process and/or the impaired inhibitory ability to withdraw from awaking state. Thus, some specific abnormal mode may exist in the emotion-cognition circuit, which is associated with abnormal cognition load, such as repeated retrieval/intrusion of aversive memories during night. Studies through the combination of multiple techniques including psychology, electrophysiology and neuroimaging methods are needed to further enhance the understanding of chronic insomnia.


Subject(s)
Brain/physiopathology , Neuroimaging , Sleep Initiation and Maintenance Disorders/pathology , Electrophysiology , Gyrus Cinguli , Hippocampus , Humans , Prefrontal Cortex , Thalamus
19.
PLoS One ; 9(3): e89790, 2014.
Article in English | MEDLINE | ID: mdl-24598769

ABSTRACT

Antisocial Personality Disorder (APD) is a personality disorder that is most commonly associated with the legal and criminal justice systems. The study of the brain in APD has important implications in legal contexts and in helping ensure social stability. However, the neural contribution to the high prevalence of APD is still unclear. In this study, we used resting-state functional magnetic resonance imaging (fMRI) to investigate the underlying neural mechanisms of APD. Thirty-two healthy individuals and thirty-five patients with APD were recruited. The amplitude of low-frequency fluctuations (ALFF) was analyzed for the whole brain of all subjects. Our results showed that APD patients had a significant reduction in the ALFF in the right orbitofrontal cortex, the left temporal pole, the right inferior temporal gyrus, and the left cerebellum posterior lobe compared to normal controls. We observed that the right orbitofrontal cortex had a negative correlation between ALFF values and MMPI psychopathic deviate scores. Alterations in ALFF in these specific brain regions suggest that APD patients may be associated with abnormal activities in the fronto-temporal network. We propose that our results may contribute in a clinical and forensic context to a better understanding of APD.


Subject(s)
Antisocial Personality Disorder/physiopathology , Cerebellum/physiopathology , Frontal Lobe/physiopathology , Temporal Lobe/physiopathology , Brain Mapping , Brain Waves , Humans , Magnetic Resonance Imaging , Young Adult
20.
PLoS One ; 8(4): e60652, 2013.
Article in English | MEDLINE | ID: mdl-23593272

ABSTRACT

Antisocial personality disorder (ASPD) is closely connected to criminal behavior. A better understanding of functional connectivity in the brains of ASPD patients will help to explain abnormal behavioral syndromes and to perform objective diagnoses of ASPD. In this study we designed an exploratory data-driven classifier based on machine learning to investigate changes in functional connectivity in the brains of patients with ASPD using resting state functional magnetic resonance imaging (fMRI) data in 32 subjects with ASPD and 35 controls. The results showed that the classifier achieved satisfactory performance (86.57% accuracy, 77.14% sensitivity and 96.88% specificity) and could extract stabile information regarding functional connectivity that could be used to discriminate ASPD individuals from normal controls. More importantly, we found that the greatest change in the ASPD subjects was uncoupling between the default mode network and the attention network. Moreover, the precuneus, superior parietal gyrus and cerebellum exhibited high discriminative power in classification. A voxel-based morphometry analysis was performed and showed that the gray matter volumes in the parietal lobule and white matter volumes in the precuneus were abnormal in ASPD compared to controls. To our knowledge, this study was the first to use resting-state fMRI to identify abnormal functional connectivity in ASPD patients. These results not only demonstrated good performance of the proposed classifier, which can be used to improve the diagnosis of ASPD, but also elucidate the pathological mechanism of ASPD from a resting-state functional integration viewpoint.


Subject(s)
Antisocial Personality Disorder/diagnosis , Antisocial Personality Disorder/physiopathology , Magnetic Resonance Imaging , Rest , Brain/pathology , Brain/physiopathology , Case-Control Studies , Humans , Male , Multivariate Analysis , Nerve Net/physiopathology , Pattern Recognition, Automated , Support Vector Machine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...