Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Tissue Bank ; 24(1): 181-190, 2023 Mar.
Article in English | MEDLINE | ID: mdl-35794499

ABSTRACT

The process of generating type I/II collagen scaffolds is fraught with bubble formation, which can interfere with the three-dimensional structure of the scaffold. Herein, we applied low-temperature vacuum freeze-drying to remove mixed air bubbles under negative pressure. Type I and II rubber sponges were acid-solubilized via acid lysis and enzymolysis. Thereafter, vacuum negative pressure was applied to remove bubbles, and the cover glass press method was applied to shape the type I/II original scaffold. Vacuum negative pressure was applied for a second time to remove any residual bubbles. Subsequent application of carbamide/N-hydroxysuccinimide cross-linked the scaffold. The traditional method was used as the control group. The structure and number of residual bubbles and pore sizes of the two scaffolds were compared. Based on the relationship between the pressure and the number of residual bubbles, a curve was created, and the time of ice formation was calculated. The bubble content of the experimental group was significantly lower than that of the control group (P < 0.05). The pore diameter of the type I/II collagen scaffold was higher in the experimental group than in the control group. The time of icing effect of type I and II collagen solution was 136.54 ± 5.26 and 144.40 ± 6.45 s, respectively. The experimental scaffold had a more regular structure with actively proliferating chondrocytes that possessed adherent pseudopodia. The findings indicated that the vacuum negative pressure method did not affect the physical or chemical properties of collagen, and these scaffolds exhibited good biocompatibility with chondrocytes.


Subject(s)
Collagen , Tissue Scaffolds , Tissue Scaffolds/chemistry , Suction , Collagen/chemistry , Collagen Type I , Collagen Type II , Tissue Engineering/methods
2.
Oncotarget ; 8(42): 71556-71562, 2017 Sep 22.
Article in English | MEDLINE | ID: mdl-29069728

ABSTRACT

Several studies addressed the association of autoimmune regulator (AIRE) gene polymorphism with the risk of rheumatoid arthritis (RA); however, their conclusions were inconsistent. For better investigating the effects of this polymorphism on the risk of RA, we conducted this study to evaluate the role of AIRE rs2075786 polymorphism in the risk of RA. Four eligible studies involving 6,755 cases and 7,970 controls were identified by searching the databases of PubMed, CNKI and EMBASE up to February 2017. Our study revealed that AIRE rs2075786 polymorphism was associated with an increased risk of RA under all genetic models. In the subgroup analysis, AIRE rs2075786 polymorphism contributed to RA susceptibility among Asians, but not among Caucasians. To summarize,, this meta-analysis confirms that AIRE rs2075786 polymorphism may play a significant role in increasing the risk of RA. Stratification analysis by ethnicity reveals that AIRE rs2075786 polymorphism is associated with an increased risk of RA among Asians, but not among Caucasians. These findings need further validation in the large multicenter case-control studies.

SELECTION OF CITATIONS
SEARCH DETAIL
...