Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Hum Cell ; 35(1): 63-82, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34807408

ABSTRACT

This study is to investigate the underlying mechanisms of mitochondrial quality control (MQC) regulated by HtrA2/Omi during ischemia/reperfusion (I/R). We utilized the mnd2 mouse model, which has a missense mutation in HtrA2/Omi, to investigate the HtrA2/Omi regulation in mitochondria after I/R injury in the cerebral cortex. Compared to homozygous (HtrA2mnd2) mice, heterozygous (HtrA2Hetero) mice showed aging signs at a later age, increased HtrA2/Omi expression in the brain cortex, and lesser neurodegenerative signs. The brain cortex of HtrA2Hetero mice had increased superoxide dismutase (SOD) activity; lower levels of malondialdehyde (MDA); higher expressions of mitochondrial unfolded protein response (mtUPR)-related proteins, NADH dehydrogenase [ubiquinone] iron-sulfur protein 7 (Ndufs7), and uncoupling protein 2 (UCP2) proteins; more mitochondrial fission; higher levels of ATP and mtDNA copies; elevated sirtuin 3 (SIRT3) activity; and increased NAD+/NADH ratio. After 1.5 h of I/R, the brain cortex of HtrA2Hetero mice had a larger infarction size, reduced HtrA2/Omi expression, decreased S-X-linked inhibitor of apoptosis protein (XIAP), and increased C-Caspase3 than that of wild-type animals (WT). Mitochondria from the HtrA2Hetero brain cortex showed decreased ATP production and MQC deficiency after 1.5 h I/R. Genipin pre-treatment reduced the aforementioned I/R injury in the HtrA2Hetero brain cortex. In conclusion, mitochondrial function is compensated in the HtrA2Hetero brain cortex via the upregulation of the UCP2-SIRT3-PGC1 axis. Decreased HtrA2/Omi function damages mitochondrial quality in the HtrA2Hetero mouse brain cortex, leading to more brain I/R injury. Genipin pre-treatment ameliorates brain damages via the mitochondrial UCP2-SIRT3-PGC1 axis.


Subject(s)
Cellular Reprogramming/genetics , Cerebral Cortex/metabolism , High-Temperature Requirement A Serine Peptidase 2/physiology , Hypoxia, Brain/genetics , Hypoxia, Brain/metabolism , Mitochondria/genetics , Mitochondria/metabolism , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/metabolism , Reperfusion Injury/genetics , Reperfusion Injury/metabolism , Sirtuin 3/metabolism , Uncoupling Protein 2/metabolism , Animals , Disease Models, Animal , Mice, Transgenic
SELECTION OF CITATIONS
SEARCH DETAIL
...