Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanoscale ; 10(47): 22196-22202, 2018 Dec 21.
Article in English | MEDLINE | ID: mdl-30325373

ABSTRACT

Magnetic tunneling junctions (MTJs) have atomic thickness due to the use of two-dimensional (2D) materials. Combining density functional theory with non-equilibrium Green's function formalism, we systematically investigate the structural and magnetic properties of CrX3/h-BN/CrX3 (X = Br, I) MTJs, as well as their spin-dependent transport characteristics. Through calculation of the transmission spectrum, the large tunneling magnetoresistance (TMR) effect was observed in these MTJs. Moreover, their conductance based on two-dimensional materials was greatly improved over that of traditional MTJs. The transmission mechanism was analyzed using the symmetry of the orbit and the eigenstates of the transmitted electrons. We also discuss the problem of Schottky contact between different metal electrodes and devices. Our results suggest that MTJs based on two-dimensional ferromagnets are feasible.

2.
ACS Appl Mater Interfaces ; 10(22): 19271-19277, 2018 Jun 06.
Article in English | MEDLINE | ID: mdl-29737827

ABSTRACT

Monolayer Schottky barrier (SB) field-effect transistors based on the in-plane heterojunction of 1T/1T'-phase (metallic) and 2H-phase (semiconducting) transition-metal dichalcogenides (TMDs) have been proposed following the recent experimental synthesis of such devices. By using density functional theory and ab initio simulations, intrinsic device performance, sub-10 nm scaling, and performance boosting of MoSe2, MoTe2, WSe2, and WTe2, SB field-effect transistors are systematically investigated. We find that the Schottky barrier heights (SBHs) of these in-plane 1T(1T')/2H contacts are proportional to their band gaps: the bigger band gap corresponds to bigger SBH. For four TMDs, the SBH of 1T/2H contact is always smaller than that of 1T'/2H contact. The WTe2 SB field-effect transistor can provide the best performance and satisfy the requirement of the high-performance transistor outlined by the International Technology Roadmap for Semiconductors down to a 6 nm gate length. In addition, the replacement of suitable 1T-TMD on the source/drain regions can modulate conduction band SB, leading to the 8.8 nm WSe2 SB field-effect transistor also satisfying the requirement. Moreover, the introduction of the underlap can increase the effective channel length and reduce the coupling between the source/drain and the channel, leading to the 5.1 nm WTe2 SB field-effect transistor also satisfying the International Technology Roadmap for Semiconductors high-performance requirement. The underlying physical mechanisms are discussed, and it is concluded that the in-plane SB engineering is the key point to optimize such two-dimensional devices.

3.
Phys Chem Chem Phys ; 20(8): 5699-5707, 2018 Feb 21.
Article in English | MEDLINE | ID: mdl-29410993

ABSTRACT

The effects of the staggered double vacancies, hydrogen (H), 3d transition metals, for example cobalt, and semiconductor covalent atoms, for example, germanium, nitrogen, phosphorus (P) and silicon adsorption on the transport properties of monolayer phosphorene were studied using density functional theory and non-equilibrium Green's function formalism. It was observed that the performance of the phosphorene tunnel field effect transistors (TFETs) with an 8.8 nm scaling channel length could be improved most effectively, if the adatoms or vacancies were introduced at the source channel interface. For H and P doped devices, the upper limit of on-state currents of phosphorene TFETs were able to be quickly increased to 2465 µA µm-1 and 1652 µA µm-1, respectively, which not only outperformed the pristine sample, but also met the requirements for high performance logic applications for the next decade in the International Technology Roadmap for Semiconductors (ITRS). It was proved that the defect-induced band gap states make the effective tunneling path between the conduction band (CB) and valence band (VB) much shorter, so that the carriers can be injected easily from the left electrode, then transfer to the channel. In this regard, the tunneling properties of phosphorene TFETs can be manipulated using surface defects. In addition, the effects of spin polarization on the transport properties of doped phosphorene TFETs were also rigorously considered, H and P doped TFETs could achieve a high ON current of 1795 µA µm-1 and 1368 µA µm-1, respectively, which is closer to realistic nanodevices.

4.
Nat Commun ; 8(1): 970, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042545

ABSTRACT

Atomically thin two-dimensional semiconducting materials integrated into van der Waals heterostructures have enabled architectures that hold great promise for next generation nanoelectronics. However, challenges still remain to enable their applications as compliant materials for integration in logic devices. Here, we devise a reverted stacking technique to intercalate a wrinkle-free boron nitride tunnel layer between MoS2 channel and source drain electrodes. Vertical tunnelling of electrons therefore makes it possible to suppress the Schottky barriers and Fermi level pinning, leading to homogeneous gate-control of the channel chemical potential across the bandgap edges. The observed features of ambipolar pn to np diode, which can be reversibly gate tuned, paves the way for future logic applications and high performance switches based on atomically thin semiconducting channel.Van der Waals heterostructures of atomically thin materials hold promise for nanoelectronics. Here, the authors demonstrate a reverted stacking fabrication method for heterostructures and devise a vertical tunnel-contacted MoS2 transistor, enabling gate tunable rectification and reversible pn to np diode behaviour.

5.
J Am Chem Soc ; 139(42): 14976-14982, 2017 10 25.
Article in English | MEDLINE | ID: mdl-28926248

ABSTRACT

Polarized detection has been brought into operation for optics applications in the visible band. Meanwhile, an advanced requirement in short-wave near-infrared (SW-NIR) (700-1100 nm) is proposed. Typical IV-VI chalcogenides-2D GeSe with anisotropic layered orthorhombic structure and narrow 1.1-1.2 eV band gap-potentially meets the demand. Here we report the unusual angle dependences of Raman spectra on high-quality GeSe crystals. The polarization-resolved absorption spectra (400-950 nm) and polarization-sensitive photodetectors (532, 638, and 808 nm) both exhibited well-reproducible cycles, distinct anisotropic features, and typical absorption ratios αy/αx ≈ 1.09 at 532 nm, 1.26 at 638 nm, and 3.02 at 808 nm (the dichroic ratio Ipy/Ipx ≈ 1.09 at 532 nm, 1.44 at 638 nm, 2.16 at 808 nm). Obviously, the polarized measurement for GeSe showed superior anisotropic response at around 808 nm within the SW-NIR band. Besides, the two testing methods have demonstrated the superior reliability for each other. For the layer dependence of linear dichroism, the GeSe samples with different thicknesses measured under both 638 and 808 nm lasers identify that the best results can be achieved at a moderate thickness about 8-16 nm. Overall, few-layer GeSe has capacity with the integrated SW-NIR optical applications for polarization detection.

6.
Phys Chem Chem Phys ; 19(30): 20121-20126, 2017 Aug 02.
Article in English | MEDLINE | ID: mdl-28726966

ABSTRACT

The device performances of both n-type and p-type tunnel field-effect transistors (TFETs) made of single-layer InX (X = N, P, As, Sb) are theoretically evaluated through density functional theory (DFT) and ab initio simulations in this paper. It is found that a promising steep subthreshold swing (SS) of [less-than-or-eq] 60 mV dec-1 can be obtained with gate length LG = 15.2 nm for all two-dimensional (2D) InX TFETs. In particular, an outstanding on-current of ∼1058 µA µm-1 (or 880 µA µm-1) is estimated in a 2D p-type (or n-type) InSb device, which could barely satisfy the ITRS requirements for future high-performance (HP) applications. In addition, the 2D InAs p-type (or n-type) TFET containing a 15.2 nm gate length has great potential to be applied to the low-power (LP) devices with an ON-OFF ratio of ION/IOFF = 1.8 × 107 (or ION/IOFF = 1.9 × 107). However, the density-of-state bottleneck effect strongly influences the behavior of 2D InP and InN devices. Our results provide guidance for experimental synthesis and future designs of a single-layer material device with a steep inverse subthreshold slope, low OFF-, and high ON-current.

7.
J Chem Theory Comput ; 12(6): 2950-63, 2016 Jun 14.
Article in English | MEDLINE | ID: mdl-27145175

ABSTRACT

Orbital-free density functional theory (OFDFT) is a quantum-mechanics-based method that utilizes electron density as its sole variable. The main computational cost in OFDFT is the ubiquitous use of the fast Fourier transform (FFT), which is mainly adopted to evaluate the kinetic energy density functional (KEDF) and electron-electron Coulomb interaction terms. We design and implement a small-box FFT (SBFFT) algorithm to overcome the parallelization limitations of conventional FFT algorithms. We also propose real-space truncation of the nonlocal Wang-Teter KEDF kernel. The scalability of the SBFFT is demonstrated by efficiently simulating one full optimization step (electron density, energies, forces, and stresses) of 1,024,000 lithium (Li) atoms on up to 65,536 cores. We perform other tests using Li as a test material, including calculations of physical properties of different phases of bulk Li, geometry optimizations of nanocrystalline Li, and molecular dynamics simulations of liquid Li. All of the tests yield excellent agreement with the original OFDFT results, suggesting that the OFDFT-SBFFT algorithm opens the door to efficient first-principles simulations of materials containing millions of atoms.

SELECTION OF CITATIONS
SEARCH DETAIL
...