Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 61
Filter
1.
Front Genet ; 14: 1112388, 2023.
Article in English | MEDLINE | ID: mdl-36950137

ABSTRACT

Background: DNA methylation plays an important role in Parkinson's disease (PD) pathogenesis. DNA methyltransferase 1 (DNMT1) is critical for maintaining DNA methylation in mammals. The link between DNMT1 polymorphisms and PD remains elusive. Methods: The DNMT1 gene contained a total of 28 single nucleotide polymorphisms (SNPs). Four representing tag-SNPs (rs16999593, rs2162560, rs11880553, and rs9305012) were identified and genotyped in a Han Chinese population comprising 712 PD patients and 696 controls. Association analyses were performed at gene-wide significance (p < 1.8 × 10-3). Results: Rs9305012, but not the other 3 tag-SNPs, was gene-wide significantly associated with PD risk (p = 0.8 × 10-3). The rs9305012/C was a protective allele against PD (p = 1.5 × 10-3, OR 0.786, 95% CI 0.677-0.912). No significant association was observed in individual genders or PD subtypes. Haplotypes of the 4 tag-SNPs showed a significant overall distribution difference between PD patients and controls (p < 1 × 10-4). The 3-allele ACC module in the order of rs2162560, rs11880553, and rs9305012 was the highest-risk haplotype associated with PD (p < 1 × 10-4, OR 2.439, 95% CI 1.563-3.704). Rs9305012 displayed certain probability to affect transcription factor binding and target gene expression based on functional annotation analyses. Conclusion: The DNMT1 variant rs9305012 together with its haplotypes may gene-wide significantly modulate PD susceptibility. Our results support a role of DNMT1 in PD pathogenesis and provide novel insights into the genetic connection in between.

2.
J Nutr ; 153(1): 167-175, 2023 01.
Article in English | MEDLINE | ID: mdl-36913450

ABSTRACT

BACKGROUND: Circulating zinc (Zn) concentrations are lower than normal in patients with Parkinson disease (PD). It is unknown whether Zn deficiency increases the susceptibility to PD. OBJECTIVES: The study aimed to investigate the effect of dietary Zn deficiency on behaviors and dopaminergic neurons in a mouse model of PD and to explore potential mechanisms. METHODS: Male C57BL/6J mice aged 8-10 wk were fed Zn adequate (ZnA; 30 µg/g) or Zn deficient (ZnD; <5 µg/g) diet throughout the experiments. Six weeks later 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) was injected to generate the PD model. Controls were injected with saline. Thus, 4 groups (Saline-ZnA, Saline-ZnD, MPTP-ZnA, and MPTP-ZnD) were formed. The experiment lasted 13 wk. Open field test, rotarod test, immunohistochemistry, and RNA sequencing were performed. Data were analyzed with t-test, 2-factor ANOVA, or Kruskal-Wallis test. RESULTS: Both MPTP and ZnD diet treatments led to a significant reduction in blood Zn concentrations (PMPTP = 0.012, PZn = 0.014), reduced total distance traveled (PMPTP < 0.001, PZn = 0.031), and affected the degeneration of dopaminergic neurons in the substantia nigra (PMPTP < 0.001, PZn = 0.020). In the MPTP-treated mice, the ZnD diet significantly reduced total distance traveled by 22.4% (P = 0.026), decreased latency to fall by 49.9% (P = 0.026), and reduced dopaminergic neurons by 59.3% (P = 0.002) compared with the ZnA diet. RNA sequencing analysis revealed a total of 301 differentially expressed genes (156 upregulated; 145 downregulated) in the substantia nigra of ZnD mice compared with ZnA mice. The genes were involved in a number of processes, including protein degradation, mitochondria integrity, and α-synuclein aggregation. CONCLUSIONS: Zn deficiency aggravates movement disorders in PD mice. Our results support previous clinical observations and suggest that appropriate Zn supplementation may be beneficial for PD.


Subject(s)
Malnutrition , Parkinson Disease , Mice , Male , Animals , Parkinson Disease/metabolism , Dopaminergic Neurons/metabolism , Mice, Inbred C57BL , Diet , Dopamine/metabolism , Zinc , Substantia Nigra/metabolism , Disease Models, Animal , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/metabolism , 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine/pharmacology
3.
Mar Drugs ; 20(9)2022 Aug 31.
Article in English | MEDLINE | ID: mdl-36135750

ABSTRACT

Our study aimed to investigate the immune-enhancing mechanism of the pentadecapeptide (RVAPEEHPVEGRYLV) from Cyclina sinensis (SCSP) in a cyclophosphamide (CTX)-induced murine model of immunosuppression. Our results showed that SCSP treatment significantly increased mouse body weight, immune organ indices, and the production of serum IL-6, IL-1ß, and tumor necrosis factor (TNF)-α in CTX-treated mice. In addition, SCSP treatment enhanced the proliferation of splenic lymphocytes and peritoneal macrophages, as well as phagocytosis of the latter in a dose-dependent manner. Moreover, SCSP elevated the phosphorylation levels of p38, ERK, JNK, PI3K and Akt, and up-regulated IKKα, IKKß, p50 NF-κB and p65 NF-κB protein levels, while down-regulating IκBα protein levels. Our results indicate that SCSP has immune-enhancing activities, and that it can activate the MAPK/NF-κB and PI3K/Akt pathways to enhance immunity in CTX-induced immunosuppressed mice.


Subject(s)
I-kappa B Kinase , NF-kappa B , Animals , Cyclophosphamide/toxicity , I-kappa B Kinase/metabolism , I-kappa B Kinase/pharmacology , Immunosuppression Therapy , Interleukin-6 , Mice , NF-KappaB Inhibitor alpha/metabolism , NF-kappa B/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction , Tumor Necrosis Factor-alpha/metabolism
4.
Front Genet ; 13: 856493, 2022.
Article in English | MEDLINE | ID: mdl-35432448

ABSTRACT

CLEC16A is a membrane-associated endosomal protein implicated in regulating autophagy and antigen presentation. Its genetic variants are broadly associated with multiple autoimmune diseases. Parkinson's disease (PD), which undergoes autophagy disruption and neuroinflammation, has been clinically observed, for an extensive amount of time, to be associated with autoimmune diseases. In this study, we aimed to understand whether the autoimmune disease associated CLEC16A variants pleiotropically modulate PD risk. Five of such CLEC16A variants, including rs6498169, rs12708716, rs12917716, rs7200786, and rs2903692, were selected and analyzed in a Han Chinese cohort comprising 515 sporadic PD patients and 504 controls. Results showed that rs6498169 and rs7200786 were significantly associated with PD susceptibility (p = 0.005 and 0.004, respectively; recessive model, p = 0.002 and 0.001, respectively). Rs6498169 was also associated with the PD subtype of postural instability/gait difficulty (p = 0.002). Haplotype analysis showed that the AAG module in order of rs6498169, rs12708716, and rs2903692 was associated with the highest risk for PD (p = 0.0047, OR = 1.42, 95% CI = 1.11-1.82). Functional annotation analyses suggested that rs6498169 had high probability to affect transcription factor binding and target gene expression. In summary, the current study demonstrates that the autoimmune disease associated CLEC16A variants convey risk of PD in Han Chinese. Our findings suggest a pleiotropic role of CLEC16A and strengthen the link between PD and autoimmune diseases.

5.
Molecules ; 28(1)2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36615232

ABSTRACT

Essential oils (EOs) are primarily isolated from medicinal plants and possess various biological properties. However, their low water solubility and volatility substantially limit their application potential. Therefore, the aim of the current study was to improve the solubility and stability of the Mosla Chinensis (M. Chinensis) EO by forming an inclusion complex (IC) with ß-cyclodextrin (ß-CD). Furthermore, the IC formation process was investigated using experimental techniques and molecular modeling. The major components of M. Chinensis 'Jiangxiangru' EOs were carvacrol, thymol, o-cymene, and terpinene, and its IC with ß-CD were prepared using the ultrasonication method. Multivariable optimization was studied using a Plackett-Burman design (step 1, identifying key parameters) followed by a central composite design for optimization of the parameters (step 2, optimizing the key parameters). SEM, FT-IR, TGA, and dissolution experiments were performed to analyze the physicochemical properties of the ICs. In addition, the interaction between EO and ß-CD was further investigated using phase solubility, molecular docking, and molecular simulation studies. The results showed that the optimal encapsulation efficiency and loading capacity of EO in the ICs were 86.17% and 8.92%, respectively. Results of physicochemical properties were different after being encapsulated, indicating that the ICs had been successfully fabricated. Additionally, molecular docking and dynamics simulation showed that ß-CD could encapsulate the EO component (carvacrol) via noncovalent interactions. In conclusion, a comprehensive methodology was developed for determining key parameters under multivariate conditions by utilizing two-step optimization experiments to obtain ICs of EO with ß-CD. Furthermore, molecular modeling was used to study the mechanisms involved in molecular inclusion complexation.


Subject(s)
Oils, Volatile , beta-Cyclodextrins , Oils, Volatile/chemistry , Molecular Docking Simulation , Research Design , Spectroscopy, Fourier Transform Infrared , beta-Cyclodextrins/chemistry , Solubility , Calorimetry, Differential Scanning , 2-Hydroxypropyl-beta-cyclodextrin/chemistry
6.
Stem Cells Int ; 2021: 7435605, 2021.
Article in English | MEDLINE | ID: mdl-34326879

ABSTRACT

OBJECTIVE: Accumulating evidence indicates that microRNAs (miRNAs) play crucial roles in osteogenic differentiation. However, the associated mechanisms remain elusive. This paper is aimed at exploring the role of miR-129-5p in regulating bone marrow mesenchymal stem cell (BMSC) differentiation and bone regeneration in vivo and in vitro. METHODS: BMSCs were transduced by miR-129-5p mimic, miR-129-5p inhibitor, and negative control lentivirus. The ability of BMSC differentiation to osteoblast was tested by alkaline phosphatase (ALP) and alizarin red staining (ARS). The expression of osteogenic genes (Runx2, Bmp2, and OCN) was examined via quantitative RT-PCR and western blot. A mouse model of calvaria defect was investigated by Micro-CT, immunohistochemistry, and histological examination. The luciferase reporter gene assay was performed to confirm the binding between Dkk3 and miR-129-5p. For the transfection experiments, lipofectamine 3000 was used to transfect pcDNA-Dkk3 into BMSCs to overexpress Dkk3. Coimmunoprecipitation and immunofluorescent localization assay were included for exploring the role of Dkk3 and ß-catenin. RESULTS: miR-129-5p was induced in BMSCs and MSC cell line C3H10T1/2 cells under osteogenic medium. Overexpression of miR-129-5p significantly promoted osteogenic differentiation of BMSCs in vitro. Moreover, BMSCs transduced with miR-129-5p mimic exhibited better bone regeneration compared with BMSCs transduced with control counterpart in vivo. Luciferase and western blot data showed that Dickkopf3 (Dkk3) is a target gene of miR-129-5p and the expression of Dkk3 was inhibited in BMSCs transduced with miR-129-5p mimic but enhanced in BMSCs transduced with miR-129-5p inhibitor. In addition, Dkk3 interacted with ß-catenin directly. CONCLUSIONS: miR-129-5p promotes osteogenic differentiation of BMSCs and bone regeneration, and miR-129-5p/Dkk3 axis may be new potential targets for the treatment of bone defect and bone loss.

7.
J Neuroinflammation ; 17(1): 200, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32611425

ABSTRACT

BACKGROUND: Astrocytes are crucial regulators in the central nervous system. Abnormal activation of astrocytes contributes to some behavior deficits. However, mechanisms underlying the effects remain unclear. Here, we studied the activation of A1 astrocytes and their contribution to murine behavior deficits. METHODS: A1 astrocytes were induced by treatment with lipopolysaccharide (LPS) in vitro. The functional phenotype of astrocytes was determined by quantitative RT-PCR, ELISA, and immunohistochemistry. To assess the role of A1 astrocytes in vivo, mice were injected intraperitoneally with LPS. Then, murine behaviors were tested, and the hippocampus and cortex were analyzed by quantitative RT-PCR, ELISA, and immunohistochemistry. The function of IL-10 and fluorocitrate on A1 astrocyte activation was also examined. RESULTS: Our results show that astrocytes isolated from B6.129S6-Il10tm1Flv/J homozygotes (IL-10tm1/tm1) were prone to characteristics of A1 reactive astrocytes. Compared with their wild-type counterparts, IL-10tm1/tm1 astrocytes exhibited higher expression of glial fibrillary acidic protein (GFAP). Whether or not they were stimulated with LPS, IL-10tm1/tm1 astrocytes exhibited enhanced expression of A1-specific transcripts and proinflammatory factors IL-1ß, IL-6, and TNFα. In addition, IL-10tm1/tm1 astrocytes demonstrated hyperphosphorylation of STAT3. Moreover, astrocytes from IL-10tm1/tm1 mice showed attenuated phagocytic ability and were neurotoxic. IL-10tm1/tm1 mice demonstrated increased immobility time in the forced swim test and defective learning and memory behavior in the Morris water maze test. Moreover, enhanced neuroinflammation was found in the hippocampus and cortex of IL-10tm1/tm1 mice, accompanying with more GFAP-positive astrocytes and severe neuron loss in the hippocampus. Pretreatment IL-10tm1/tm1 mice with IL-10 or fluorocitrate decreased the expression of proinflammatory factors and A1-specific transcripts in the hippocampus and cortex, and then alleviated LPS-induced depressive-like behavior. CONCLUSION: These results demonstrate that astrocytes isolated from B6.129S6-Il10tm1Flv/J homozygotes are prone to A1 phenotype and contribute to the depression-like behavior and memory deficits. Inhibiting A1 astrocyte activation may be an attractive therapeutic strategy in some neurodegenerative diseases.


Subject(s)
Astrocytes/drug effects , Behavior, Animal/drug effects , Citrates/pharmacology , Cognitive Dysfunction/drug therapy , Depression/drug therapy , Interleukin-10/pharmacology , Animals , Astrocytes/metabolism , Behavior, Animal/physiology , Cell Survival/drug effects , Cerebral Cortex/drug effects , Cerebral Cortex/metabolism , Citrates/therapeutic use , Cognitive Dysfunction/metabolism , Depression/metabolism , Disease Models, Animal , Hippocampus/drug effects , Hippocampus/metabolism , Interleukin-10/therapeutic use , Male , Maze Learning/drug effects , Mice
8.
Int J Stem Cells ; 13(2): 237-245, 2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32323514

ABSTRACT

BACKGROUND AND OBJECTIVES: The effective use of MSCs for the treatment of some B cell-mediated immune diseases is quite limited. The main reason is that the immunomodulatory effects of mesenchymal stem cells (MSCs) on B cells are unclear, and their underlying mechanisms have not been fully explored. METHODS AND RESULTS: By co-culturing B cells with MSCs without (MSC/CTLsh) or with suppressor of cytokine signaling 1 (SOCS1) knockdown (MSC/SOCS1sh), we found that MSCs inhibited B cell proliferation, activation and terminal differentiation. Remarkably, the highest inhibition of B cell proliferation was observed in MSC/SOCS1sh co-culture. Besides, MSC/SOCS1sh reversed the inhibitory effect of MSCs in the last stage of B cell differentiation. However, MSC/SOCS1sh had no effect on inhibiting B cell activation by MSCs. We also showed that IgA+ B cell production was significantly higher in MSC/SOCS1sh than in MSC/CTLsh, although no difference was observed when both MSCs co-cultures were compared to isolated B cells. In addition, MSCs increased PGE2 production after TNF-α/IFN-γ stimulation, with the highest increase observed in MSC/SOCS1sh co-culture. CONCLUSIONS: Our results highlighted the role of SOCS1 as an important new mediator in the regulation of B cell function by MSCs. Therefore, these data may help to develop new treatments for B cell-mediated immune diseases.

9.
Stem Cells Int ; 2020: 3150716, 2020.
Article in English | MEDLINE | ID: mdl-32322277

ABSTRACT

Aging is a predominant risk factor for many chronic conditions. Stem cell dysfunction plays a pivotal role in the aging process. Prelamin A, an abnormal processed form of the nuclear lamina protein lamin A, has been reported to trigger premature senescence. However, the mechanism driving stem cell dysfunction is still unclear. In this study, we found that while passaging subchondral bone mesenchymal stem cells (SCB-MSCs) in vitro, prelamin A accumulation occurred concomitantly with an increase in senescence-associated ß-galactosidase (SA-ß-Gal) expression. Unlike their counterparts, SCB-MSCs with prelamin A overexpression (MSC/PLA) demonstrated decreased proliferation, osteogenesis, and adipogenesis but increased production of inflammatory factors. In a hind-limb ischemia model, MSC/PLA also exhibited compromised therapy effect. Further investigation showed that exogenous prelamin A triggered abnormal nuclear morphology, DNA and shelterin complex damage, cell cycle retardation, and eventually cell senescence. Changes in gene expression profile were also verified by microarray assay. Interestingly, we found that ascorbic acid or vitamin C (VC) treatment could inhibit prelamin A expression in MSC/PLA and partially reverse the premature aging in MSC/PLA, with reduced secretion of inflammatory factors and cell cycle arrest and resistance to apoptosis. Importantly, after VC treatment, MSC/PLA showed enhanced therapy effect in the hind-limb ischemia model. In conclusion, prelamin A can accelerate SCB-MSC premature senescence by inducing DNA damage. VC can be a potential therapeutic reagent for prelamin A-induced aging defects in MSCs.

10.
Stem Cells Int ; 2019: 2631024, 2019.
Article in English | MEDLINE | ID: mdl-31772586

ABSTRACT

Adipose-derived stem cells (ASCs) have become one of the most promising stem cell populations for cell-based therapies in regenerative medicine and for autoimmune disorders owing to their multilineage differentiation and immunomodulatory capacities, respectively. One advantage of ASC-based therapy lies in their immunosuppressive potential. However, how to get ASCs to provide consistent immunosuppression remains unclear. In the current study, we found that miR-129-5p was induced in ASCs treated with inflammatory factors. ASCs with miR-129-5p knockdown exhibited enhanced immunosuppressive capacity, as evidenced by reduced expression of proinflammatory factors, with concurrent increased expression of inducible nitric oxide synthases (iNOS) and nitric oxide (NO) production. These cells also had an increased capacity to inhibit T cell proliferation in vitro. ASCs with miR-129-5p knockdown alleviated inflammatory bowel diseases and promoted tumor growth in vivo. Consistently, ASCs that overexpressed miR-129-5p exhibited reduced iNOS expression. Furthermore, we show that miR-129-5p knockdown in ASCs results in hyperphosphorylation of signal transducer and activator of transcription 1 (Stat1). When fludarabine, an inhibitor of Stat1 activation, was added to ASCs with miR-129-5p knockdown, iNOS mRNA and protein levels were significantly reduced. Collectively, these results reveal a new role for miR-129-5p in regulating the immunomodulatory activities of ASCs by targeting Stat1 activation. These novel insights into the mechanisms of ASC immunoregulation may lead to the consistent production of ASCs with strong immunosuppressive functions and thus better clinical utility of these cells.

11.
Zhongguo Shi Yan Xue Ye Xue Za Zhi ; 27(5): 1627-1632, 2019 Oct.
Article in Chinese | MEDLINE | ID: mdl-31607324

ABSTRACT

OBJECTIVE: To study the regulatory effect of deubiquitinase MYSM1 on differentiation of B cells to plasma cells. METHODS: The interfering and overexpression plasmids of MYSM1 were constructed and then the corresponding lentiviruses were packaged. Human CD19+ B cells were isolated from human peripheral blood with Miltenyi B cell isolation kit. Purified CD19+ B cells were transduced with lentiviruses and then treated with LPS, the CD138 expression was detected by flow cytometry. The expression of transcription factor was determined by quantitative PCR. RESULTS: The differentiation of B cells to plasma cells was enhanced after interfering in MYSM1 expression. Quantitative PCR showed that mRNA levels of Pax5 and Bach2 in cells with interfering in MYSM1 were much lower than their counterpart (P<0.01), and mRNA levels of Prdm1 and Xbp1 in cells with interfering in MYSM1 were much higher than their counterpart (P<0.01). On the contrary, the differentiation of B cells to plasma cells was inhibited after the overexpression of MYSM1. Quantitative PCR showed that mRNA levels of Pax5 and Bach2 in cells with MYSM1 overexpression were higher than those in control cells (P<0.01), and mRNA levels of Prdm1 and Xbp1 in cells with MYSM1 overexpression were much lower than those in their counterpart (P<0.01). CONCLUSION: MYSM1 negatively regulates differentiation of human B cells to plasma cells.


Subject(s)
B-Lymphocytes , DNA-Binding Proteins/genetics , Plasma Cells , Transcription Factors/genetics , Cell Differentiation , Deubiquitinating Enzymes , Humans , Trans-Activators , Ubiquitin-Specific Proteases
12.
Mol Biol Rep ; 46(4): 3991-3999, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31168669

ABSTRACT

Mesenchymal stem cells (MSCs) are self-renewing multipotent cells with immunoregulatory function, which makes them attractive candidates for regenerative medicine. However, the detailed mechanisms of their immunomodulatory capacity are not fully characterized. Here, we found that casein kinase 2 interacting protein-1 (CKIP-1) expression was induced in the murine MSC cell line C3H/10T1/2 by LPS. Knockdown of CKIP-1 did not cause significant differences on the cell cycle or immunophenotype of MSCs. However, MSCs with CKIP-1 knockdown showed enhanced immunosuppressive capacity. Real-time PCR and western blot analyses revealed that compared with the control group, MSCs with CKIP-1-knockdown exhibited higher IL-10 production and p38 MAPK phosphorylation following LPS treatment. Interestingly, the expression of CKIP-1 was decreased in MSCs following high glucose treatment. Furthermore, MSCs became more immunosuppressive after high glucose treatment, as shown by higher IL-10 production and enhanced inhibition of T cell proliferation. Collectively, our data reveal a novel role for CKIP-1 in regulating MSC-mediated immunomodulation, and indicate that MSCs become more immunosuppressive under high glucose conditions. These new insights may help in the development of future applications of MSCs.


Subject(s)
Carrier Proteins/immunology , Immunologic Factors/metabolism , Mesenchymal Stem Cells/immunology , Animals , Carrier Proteins/metabolism , Cell Differentiation/immunology , Cell Line , Cell Proliferation/physiology , Cytokines/immunology , Glucose/immunology , Glucose/metabolism , Immunomodulation/immunology , Immunophenotyping/methods , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred C57BL
13.
J Cell Mol Med ; 23(5): 3737-3746, 2019 05.
Article in English | MEDLINE | ID: mdl-30895711

ABSTRACT

Adipose-derived stem cells (ASCs) are highly attractive for cell-based therapies in tissue repair and regeneration because they have multilineage differentiation capacity and are immunosuppressive. However, the detailed epigenetic mechanisms of their immunoregulatory capacity are not fully defined. In this study, we found that Mysm1 was induced in ASCs treated with inflammatory cytokines. Adipose-derived stem cells with Mysm1 knockdown exhibited attenuated immunosuppressive capacity, evidenced by less inhibition of T cell proliferation, more pro-inflammatory factor secretion and less nitric oxide (NO) production in vitro. Mysm1-deficient ASCs exacerbated inflammatory bowel diseases but inhibited tumour growth in vivo. Mysm1-deficient ASCs also showed depressed miR-150 expression. When transduced with Mysm1 overexpression lentivirus, ASCs exhibited enhanced miR-150 expression. Furthermore, Mysm1-deficient cells transduced with lentivirus containing miR-150 mimics produced less pro-inflammatory factors and more NO. Our study reveals a new role of Mysm1 in regulating the immunomodulatory activities of ASCs by targeting miR-150. These novel insights into the mechanisms through which ASCs regulate immune reactions may lead to better clinical utility of these cells.


Subject(s)
Adipose Tissue/cytology , Epigenesis, Genetic/immunology , MicroRNAs/immunology , Stem Cells/immunology , Trans-Activators/immunology , Ubiquitin-Specific Proteases/immunology , Animals , Cell Proliferation/drug effects , Cells, Cultured , Gene Expression/drug effects , Gene Expression/immunology , Interferon-gamma/pharmacology , Mice, Inbred C57BL , Mice, Knockout , MicroRNAs/genetics , Nitric Oxide/immunology , Nitric Oxide/metabolism , Stem Cells/cytology , Stem Cells/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/drug effects , T-Lymphocytes/immunology , Trans-Activators/genetics , Trans-Activators/metabolism , Tumor Necrosis Factor-alpha/pharmacology , Ubiquitin-Specific Proteases/genetics , Ubiquitin-Specific Proteases/metabolism
14.
Cell Prolif ; 52(3): e12574, 2019 May.
Article in English | MEDLINE | ID: mdl-30724402

ABSTRACT

Induced pluripotent stem cells (iPSCs) are reprogrammed somatic cells that gained self-renewal and differentiation capacity similar to embryonic stem cells. Taking the precious opportunity of the TianZhou-1 spacecraft mission, we studied the effect of space microgravity (µg) on the self-renewal capacity of iPSCs. Murine iPSCs carrying pluripotency reporter Oct4-GFP were used. The Oct4-EGFP-iPSCs clones were loaded into the bioreactor and exposed to µg in outer space for 14 days. The control experiment was performed in identical device but on the ground in earth gravity (1 g). iPSCs clones were compact and highly expressed Oct4 before launch. In µg condition, cells in iPSC clones spread out more rapidly than those in ground 1 g condition during the first 3 days after launch. However, in 1 g condition, as the cell density increases, the Oct4-GFP signal dropped significantly during the following 3 days. Interestingly, in µg condition, iPSCs originated from the spread-out clones during the first 3 days appeared to cluster together and reform colonies that activated strong Oct4 expression. On the other hand, iPSC clones in 1 g condition were not able to recover Oct4 expression after overgrown. Our study for the first time performed real-time imaging on the proliferation process of iPSCs in space and found that in µg condition, cell behaviour appeared to be more dynamic than on the ground.


Subject(s)
Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/physiology , Space Flight , Weightlessness , Animals , Bioreactors , Cell Proliferation , Cell Self Renewal , Clone Cells , Computer Systems , Mice , Mice, Transgenic , Octamer Transcription Factor-3/genetics , Octamer Transcription Factor-3/metabolism , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Regeneration
15.
Mol Biol Rep ; 45(6): 2393-2401, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30386973

ABSTRACT

Macrophages play pivotal roles in innate and adaptive immune response, tissue homeostasis and cancer development. Their development and heterogeneity are tightly controlled by epigenetic program and transcription factors. Deubiquitinase Mysm1 plays crucial roles in regulating stem cell maintenance and immune cell development. Here we show that Mysm1 expression is up regulated during bone marrow macrophage development. Mysm1 deficient cells exhibit accelerating proliferation with more cells going to S phase and higher cyclin D1, cyclin D2 and c-Myc expression. However, compared to WT counterparts, more cell death is also detected in Mysm1 deficient cells no matter M-CSF deprived or not. In LPS-condition medium, Mysm1-/- macrophages show more pro-inflammatory factors IL-1ß, TNFα and iNOS production. In addition, much higher expression of surface marker CD86 is detected in Mysm1-/- macrophages. In vivo tumor model data demonstrate that in contrast to WT macrophages promoting tumor growth, Mysm1-/- macrophages inhibit tumor growth, showing the properties of M1 macrophages. Collectively, these data indicate that Mysm1 is essential for macrophage survival and plays an important role in macrophage polarization and might be a target for cell therapy.


Subject(s)
Endopeptidases/metabolism , Macrophages/metabolism , Animals , Apoptosis , Cell Cycle/physiology , Cell Differentiation , Cells, Cultured , Deubiquitinating Enzymes/metabolism , Endopeptidases/physiology , Gene Expression Regulation/genetics , Mice, Knockout , Stem Cells , Trans-Activators , Transcription Factors , Ubiquitin-Specific Proteases , Ubiquitination/physiology
16.
Cell Physiol Biochem ; 49(5): 1959-1969, 2018.
Article in English | MEDLINE | ID: mdl-30235449

ABSTRACT

BACKGROUND/AIMS: Primary splenic angiosarcoma is an aggressive malignancy originating from endothelial cells with a particularly poor outcome despite radical therapy. Owing to its extremely low incidence, available data for splenic angiosarcoma are limited. The present study aimed to address this limitation by presenting a thorough retrospective analysis of Chinese primary splenic angiosarcoma patients over a 53-year period (1963-2016). METHODS: To determine the characteristics of Chinese primary splenic angiosarcoma and identify factors that impact the outcomes of this histology, we retrospectively retrieved reports of 110 Chinese primary splenic angiosarcoma cases published between 1963-2012. RESULTS: In total, 61 males and 49 females diagnosed with primary splenic angiosarcoma were included in the present study. The median age at diagnosis was 50 years (range 2.5-76 years). Of these patients, 25.5% had received prior radiotherapy. The rate of splenic rupture was 59.11%. The 1-year overall survival rate was 19.1% with a median overall survival time of 8.1 months. Age, gender, and radiation history showed no correlation with survival rate. However, by univariate analysis, we found that significant adverse predictors of survival were splenic rupture before surgery and large tumor size (> 5 cm), while adjuvant chemotherapy was a favorable predictor. Furthermore, multivariate analysis revealed that splenic rupture and adjuvant chemotherapy were independent adverse and favorable predictors, respectively. CONCLUSION: Our large series describes and confirms the characteristics and poor prognosis of Chinese primary splenic angiosarcoma, thus indicating a critical role for early diagnosis and surgical intervention (prior to rupture) in management, and highlights the promising potential of adjuvant chemotherapy for improving the outcome in these cases.


Subject(s)
Hemangiosarcoma/diagnosis , Splenic Neoplasms/diagnosis , Adolescent , Adult , Aged , Chemotherapy, Adjuvant , Child , Child, Preschool , China , Databases, Factual , Female , Hemangiosarcoma/drug therapy , Hemangiosarcoma/mortality , Hemangiosarcoma/pathology , Humans , Male , Middle Aged , Neoplasms, Radiation-Induced/diagnosis , Neoplasms, Radiation-Induced/pathology , Prognosis , Proportional Hazards Models , Retrospective Studies , Splenic Neoplasms/drug therapy , Splenic Neoplasms/mortality , Splenic Neoplasms/pathology , Survival Rate , Young Adult
17.
Med Sci Monit ; 24: 2541-2549, 2018 Apr 25.
Article in English | MEDLINE | ID: mdl-29694335

ABSTRACT

BACKGROUND Histone H2A deubiquitinase MYSM1 has recently been shown to be essential for hematopoiesis and hematopoietic stem cell (HSC) function in both mice and humans. However, conventional MYSM1 knockouts cause partial embryonic lethality and growth retardation, and it is difficult to convincingly remove the effects of environmental factors on HSC differentiation and function. MATERIAL AND METHODS MYSM1 conditional knockout (cKO) mice were efficiently induced by using the Vav1-cre transgenic system. The Vav-Cre MYSM1 cKO mice were then analyzed to verify the intrinsic role of MYSM1 in hematopoietic cells. RESULTS MYSM1 cKO mice were viable and were born at normal litter sizes. At steady state, we observed a defect in hematopoiesis, including reduced bone marrow cellularity and abnormal HSC function. MYSM1 deletion drives HSCs from quiescence into rapid cycling, and MYSM1-deficient HSCs display impaired engraftment. In particular, the immature cycling cKO HSCs have elevated reactive oxygen species (ROS) levels and are prone to apoptosis, resulting in the exhaustion of the stem cell pool during stress response to 5-FU. CONCLUSIONS Our study using MYSM1 cKO mice confirms the important role of MYSM1 in maintaining HSC quiescence and survival.


Subject(s)
Endopeptidases/metabolism , Hematopoietic Stem Cells/metabolism , Animals , Apoptosis/physiology , Cell Differentiation/physiology , Cell Division , Cell Survival/genetics , Endopeptidases/genetics , Hematopoiesis , Hematopoietic Stem Cells/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Reactive Oxygen Species/metabolism , Trans-Activators , Ubiquitin-Specific Proteases
18.
Mediators Inflamm ; 2017: 4927964, 2017.
Article in English | MEDLINE | ID: mdl-29138530

ABSTRACT

H. pylori induces a complicated local and systematic immune response and contributes to the carcinogenesis of gastric cancer. A primary type 1 immune response is evoked by H. pylori since its occurrence. However, it is not unusual that an inhibitory immunity is dominant in H. pylori-associated diseases, which are promoted by the formation of immunosuppressive microenvironment. But whether group 2 innate lymphoid cells (ILC2s) plays a critical role in H. pylori-induced skewed type 2 immunity is still unclear. In the present study, firstly, we confirmed that type 1 immunity was inhibited and type 2 immunity were undisturbed or promoted after H. pylori infection in vitro and in vivo. Secondly, GATA-3 was firstly found to be increased in the interstitial lymphocytes from H. pylori-associated gastric cancer, among them, Lin-GATA-3+ cells and Lin+GATA-3+ cells were also found to be enhanced, which indicated an important role for ILC2s in H. pylori infection. More importantly, ILC2s were found to be increased after H. pylori infection in clinical patients and animal models. In conclusion, our results indicated that ILC2-mediated innate immune response might play a potential role in dominant type 2 phenotype and immunosuppressive microenvironment in H. pylori infection.


Subject(s)
Helicobacter Infections/immunology , Helicobacter pylori/pathogenicity , Animals , Cells, Cultured , Enzyme-Linked Immunosorbent Assay , Flow Cytometry , Gastric Mucosa/microbiology , Humans , Immunohistochemistry , Male , Mice
19.
World J Gastroenterol ; 23(29): 5345-5355, 2017 Aug 07.
Article in English | MEDLINE | ID: mdl-28839434

ABSTRACT

AIM: To clarify the mechanisms of connexin 32 (Cx32) downregulation by potential transcriptional factors (TFs) in Helicobacter pylori (H. pylori)-associated gastric carcinogenesis. METHODS: Approximately 25 specimens at each developmental stage of gastric carcinogenesis [non-atrophic gastritis, chronic atrophic gastritis, intestinal metaplasia, dysplasia and gastric carcinoma (GC)] with H. pylori infection [H. pylori (+)] and 25 normal gastric mucosa (NGM) without H. pylori infection [H. pylori (-)] were collected. After transcriptional factor array analysis, the Cx32 and PBX1 expression levels of H. pylori-infected tissues from the developmental stages of GC and NGM with no H. pylori infection were measured by real-time polymerase chain reaction (RT-PCR) and Western blot analysis. Regarding H. pylori-infected animal models, the Cx32 and PBX1 mRNA expression levels and correlation between the gastric mucosa from 10 Mongolian gerbils with long-term H. pylori colonization and 10 controls were analyzed. PBX1 and Cx32 mRNA and protein levels were further studied under the H. pylori-infected condition as well as PBX1 overexpression and knockdown conditions in vitro. RESULTS: Incremental PBX1 was first detected by TF microarray in H. pylori-related gastric carcinogenesis. The identical trend of PBX1 and Cx32 expression was confirmed in the developmental stages of H. pylori-related clinical specimens. The negative correlation of PBX1 and Cx32 was confirmed in H. pylori-infected Mongolian gerbils. Furthermore, decreased PBX1 expression was detected in the normal gastric epithelial cell line GES-1 with H. pylori infection. Enforced overexpression or RNAi-mediated knockdown of PBX1 contributed to the diminished or restored Cx32 expression in GES-1 and the gastric carcinoma cell line BGC823, respectively. Finally, dual-luciferase reporter assay in HEK293T cells showed that Cx32 promoter activity decreased by 30% after PBX1 vector co-transfection, indicating PBX1 as a transcriptional downregulator of Cx32 by directly binding to its promoters. CONCLUSION: PBX1 is one of the determinants in the Cx32 promoter targeting site, preventing further damage of gap junction protein in H. pylori-associated gastric carcinogenesis.


Subject(s)
Carcinogenesis/pathology , Carcinoma/pathology , Connexins/metabolism , Helicobacter Infections/pathology , Pre-B-Cell Leukemia Transcription Factor 1/metabolism , Stomach Neoplasms/pathology , Adolescent , Adult , Aged , Animals , Carcinoma/microbiology , Cell Line, Tumor , Chronic Disease , Coculture Techniques , Connexins/genetics , Disease Models, Animal , Down-Regulation , Female , Gastric Mucosa/microbiology , Gastric Mucosa/pathology , Gastritis, Atrophic/microbiology , Gastritis, Atrophic/pathology , Gastroscopy , Gene Knockdown Techniques , Gerbillinae , HEK293 Cells , Helicobacter Infections/microbiology , Helicobacter pylori/isolation & purification , Humans , Male , Metaplasia , Middle Aged , Pre-B-Cell Leukemia Transcription Factor 1/genetics , Promoter Regions, Genetic/genetics , RNA, Small Interfering/metabolism , Stomach/microbiology , Stomach/pathology , Stomach Neoplasms/microbiology , Stomach Neoplasms/surgery , Up-Regulation , Young Adult , Gap Junction beta-1 Protein
20.
Tumour Biol ; 39(6): 1010428317705013, 2017 Jun.
Article in English | MEDLINE | ID: mdl-28651486

ABSTRACT

PTOV1 has been demonstrated to play an extensive role in many types of cancers. This study takes the first step to clarify the potential relationship between esophageal squamous cell carcinoma and PTOV1 expression and highlight the link between PTOV1 and the tumorigenesis, progression, and prognosis of esophageal squamous cell carcinoma. PTOV1 expression was detected by quantitative reverse transcription polymerase chain reaction and western blotting or immunohistochemical staining in esophageal squamous cell carcinoma cell lines, esophageal squamous cell carcinoma tissues, and its paired adjacent non-cancerous tissues. Moreover, we have analyzed the relationship between PTOV1 expression and clinicopathological features of esophageal squamous cell carcinoma. Survival analysis and Cox regression analysis were used to assess its prognostic significance. We found that PTOV1 expression was significantly higher in the esophageal squamous cell carcinoma cell lines and tissues at messenger RNA level (p < 0.001) and protein level (p < 0.001). Gender, tumor size, or differentiation was tightly associated with the PTOV1 expression. Lymph node involvement (p < 0.001) and TNM stage (p < 0.001) promoted a high PTOV1 expression. A prognostic significance of PTOV1 was also found by Log-rank method, and the overexpression of PTOV1 was related to a shorter OS and DFS. Multiple Cox regression analysis indicated overexpressed PTOV1 as an independent indicator for adverse prognosis. In conclusion, this study takes the lead to demonstrate that the overexpressed PTOV1 plays a vital role in the tumorigenesis and progression of esophageal squamous cell carcinoma, and it is potentially a valuable prognostic predicator and new chemotherapeutic target for esophageal squamous cell carcinoma.


Subject(s)
Biomarkers, Tumor/genetics , Carcinogenesis/genetics , Carcinoma, Squamous Cell/genetics , Esophageal Neoplasms/genetics , Neoplasm Proteins/genetics , Prognosis , Adult , Aged , Biomarkers, Tumor/biosynthesis , Carcinoma, Squamous Cell/pathology , Disease Progression , Disease-Free Survival , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma , Female , Gene Expression Regulation, Neoplastic , Humans , Lymphatic Metastasis , Middle Aged , Neoplasm Proteins/biosynthesis , Neoplasm Staging
SELECTION OF CITATIONS
SEARCH DETAIL
...