Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 7(23): 12649-54, 2015 Jun 17.
Article in English | MEDLINE | ID: mdl-25996162

ABSTRACT

Because of the noninvasive, locally selective potential of thermal energy, considerable effort has been focused on the use of an external, alternating magnetic field for conversion of magnetic work to heat with iron oxide nanoparticles. However, proper regulation of thermal energy remains a challenge because of the lack of feedback from the local temperature change to the external power supply. Here, we show development of smart magnetic nanoparticles composed of Fe and Si with intrinsically tunable heat generation capability. They were engineered to possess an adjustable magnetic transition temperature through tuning the exchange between Fe atoms by incorporation of silicon atoms. They show relatively high magnetic moment. Moreover, their biocompatibility was established in several cell lines. The nanoparticles were also combined with a thermosensitive polymer, which had the capability to release of molecules with a magnetic stimulus, thereby providing a platform for locally controlled, drug release.

SELECTION OF CITATIONS
SEARCH DETAIL
...