Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 101
Filter
1.
Heliyon ; 10(10): e31614, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38831825

ABSTRACT

Addressing the critical need for accurate fall event detection due to their potentially severe impacts, this paper introduces the Spatial Channel and Pooling Enhanced You Only Look Once version 5 small (SCPE-YOLOv5s) model. Fall events pose a challenge for detection due to their varying scales and subtle pose features. To address this problem, SCPE-YOLOv5s introduces spatial attention to the Efficient Channel Attention (ECA) network, which significantly enhances the model's ability to extract features from spatial pose distribution. Moreover, the model integrates average pooling layers into the Spatial Pyramid Pooling (SPP) network to support the multi-scale extraction of fall poses. Meanwhile, by incorporating the ECA network into SPP, the model effectively combines global and local features to further enhance the feature extraction. This paper validates the SCPE-YOLOv5s on a public dataset, demonstrating that it achieves a mean Average Precision of 88.29 %, outperforming the You Only Look Once version 5 small by 4.87 %. Additionally, the model achieves 57.4 frames per second. Therefore, SCPE-YOLOv5s provides a novel solution for fall event detection.

2.
Biodes Res ; 6: 0035, 2024.
Article in English | MEDLINE | ID: mdl-38725579

ABSTRACT

Paclitaxel is a renowned broad-spectrum anticancer drug. With the establishment of a chromosome-level high-quality reference genome map of Taxus, recent research on paclitaxel biosynthesis has flourished. The oxetane ring is a distinctive chemical moiety of paclitaxel, and three recent studies have proposed different enzymes involved in its formation, reflecting divergent opinions on whether the pathway proceeds via acetylation followed by epoxidation or vice versa. Subsequently, researchers have elucidated gene clusters responsible for the biosynthesis of the key intermediate baccatin III. Despite varying reports, two studies successfully achieved heterologous biosynthesis of baccatin III by transient expression in tobacco. Taxadiene 5α-hydroxylase (T5αH), the first cytochrome P450 in the pathway, exhibited varied product profiles upon heterologous expression systems, contrasting with observations in native Taxus species, probably due to differences in partner proteins or cellular microenvironments. Further elucidation of biosynthesis mechanisms, including the reaction order and the promiscuity of key enzymes, is anticipated through collaborative efforts among botanists, chemists, and synthetic biologists.

3.
Am J Med Sci ; 367(6): 382-396, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38431191

ABSTRACT

BACKGROUND: Calcitriol has the potential to counteract fibrotic diseases beyond its classical action of maintaining calcium and bone metabolism; however, its functional mechanism remains unknown. Autophagy-related gene 16-like 1 (Atg16l1) is one of the genes related to autophagy and is involved in protecting against fibrotic diseases. The present study aimed to explore the contribution of autophagy to the inhibition of calcitriol-induced hepatic fibrosis, as well as its potential molecular mechanism. METHODS: Carbon tetrachloride (Ccl4)-treated mice were established as hepatic fibrosis models and received calcitriol treatment for 6 weeks. Quantification of Sirius red staining and measurement of key fibrotic markers (collagen-1 and α-SMA) was performed to detect hepatic fibrosis. Chloroquine (CQ) treatment was used to observe autophagic flux, and 3-methyladenine (3-MA) was used to inhibit autophagy. Furthermore, the effects of calcitriol on transforming growth factor ß1 (TGFß1)-stimulated primary hepatic stellate cells (HSCs) were detected. Downregulation of Atg16l1 or vitamin D receptor (VDR) in LX-2 cells was used to explore the mechanism of action of calcitriol in fibrosis and autophagy. Additionally, the electrophoretic mobility shift assay (EMSA) was used to investigate the interactions between VDR and ATG16L1. RESULTS: Calcitriol increased the expression of VDR and ATG16L1, enhanced autophagy and attenuated hepatic fibrosis. 3-MA treatment and VDR silencing abolished the protective effects of calcitriol against fibrosis. Calcitriol-induced anti-fibrosis effects were blocked by ATG16L1 suppression. Furthermore, VDR bound to the ATG16L1 promoter and downregulation of VDR decreased the expression of ATG16L1 in LX-2 cells. CONCLUSION: Calcitriol mitigates hepatic fibrosis partly through ATG16L1-mediated autophagy.


Subject(s)
Autophagy-Related Proteins , Autophagy , Calcitriol , Hepatic Stellate Cells , Liver Cirrhosis , Receptors, Calcitriol , Autophagy/drug effects , Animals , Calcitriol/pharmacology , Calcitriol/therapeutic use , Mice , Liver Cirrhosis/drug therapy , Liver Cirrhosis/metabolism , Liver Cirrhosis/pathology , Receptors, Calcitriol/metabolism , Receptors, Calcitriol/genetics , Autophagy-Related Proteins/metabolism , Autophagy-Related Proteins/genetics , Hepatic Stellate Cells/drug effects , Hepatic Stellate Cells/metabolism , Male , Humans , Carbon Tetrachloride/toxicity , Mice, Inbred C57BL , Disease Progression , Transforming Growth Factor beta1/metabolism
4.
Biomed Pharmacother ; 174: 116440, 2024 May.
Article in English | MEDLINE | ID: mdl-38518605

ABSTRACT

Rheumatoid arthritis (RA) is a complex autoimmune inflammatory rheumatic disease characterized by an imbalance between immunological reactivity and immune tolerance. Regulatory T cells (Tregs), which play a crucial role in controlling ongoing autoimmunity and maintaining peripheral tolerance, have shown great potential for the treatment of autoimmune inflammatory rheumatic diseases such as RA. This review aims to provide an updated summary of the latest insights into Treg-targeting techniques in RA. We focus on current therapeutic strategies for targeting Tregs based on discussing their subsets, surface markers, suppressive function, and signaling pathways in RA.


Subject(s)
Arthritis, Rheumatoid , Biomarkers , Signal Transduction , T-Lymphocytes, Regulatory , Humans , Arthritis, Rheumatoid/immunology , Arthritis, Rheumatoid/drug therapy , T-Lymphocytes, Regulatory/immunology , Animals , Biomarkers/metabolism
5.
Nat Commun ; 15(1): 2526, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38514666

ABSTRACT

ß-Cell dysfunction and ß-cell loss are hallmarks of type 2 diabetes (T2D). Here, we found that trimethylamine N-oxide (TMAO) at a similar concentration to that found in diabetes could directly decrease glucose-stimulated insulin secretion (GSIS) in MIN6 cells and primary islets from mice or humans. Elevation of TMAO levels impairs GSIS, ß-cell proportion, and glucose tolerance in male C57BL/6 J mice. TMAO inhibits calcium transients through NLRP3 inflammasome-related cytokines and induced Serca2 loss, and a Serca2 agonist reversed the effect of TMAO on ß-cell function in vitro and in vivo. Additionally, long-term TMAO exposure promotes ß-cell ER stress, dedifferentiation, and apoptosis and inhibits ß-cell transcriptional identity. Inhibition of TMAO production improves ß-cell GSIS, ß-cell proportion, and glucose tolerance in both male db/db and choline diet-fed mice. These observations identify a role for TMAO in ß-cell dysfunction and maintenance, and inhibition of TMAO could be an approach for the treatment of T2D.


Subject(s)
Diabetes Mellitus, Type 2 , Humans , Male , Animals , Mice , Mice, Inbred C57BL , Glucose/pharmacology , Methylamines/pharmacology , Signal Transduction , Insulin/pharmacology
6.
Cancer Biother Radiopharm ; 39(3): 169-177, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38193811

ABSTRACT

Purpose: Immunohistochemistry (IHC) is the main method to detect human epidermal growth factor receptor 2 (HER2) expression levels. However, IHC is invasive and cannot reflect HER2 expression status in real time. The aim of this study was to construct and verify three types of radiomics models based on 18F-fuorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) imaging and to evaluate the predictive ability of these radiomics models for the expression status of HER2 in patients with gastric cancer (GC). Patients and Methods: A total of 118 patients with GC were enrolled in this study. 18F-FDG PET/CT imaging was performed prior to surgery. The LIFEx software package was applied to extract PET and CT radiomics features. The minimum absolute contraction and selection operator (least absolute shrinkage and selection operator [LASSO]) algorithm was used to select the best radiomics features. Three machine learning methods, logistic regression (LR), support vector machine (SVM), and random forest (RF) models, were constructed and verified. The Synthetic Minority Oversampling Technique (SMOTE) was applied to address data imbalance. Results: In the training and test sets, the area under the curve (AUC) values of the LR, SVM, and RF models were 0.809, 0.761, 0.861 and 0.628, 0.993, 0.717, respectively, and the Brier scores were 0.118, 0.214, and 0.143, respectively. Among the three models, the LR and RF models exhibited extremely good prediction performance. The AUC values of the three models significantly improved after SMOTE balanced the data. Conclusions: 18F-FDG PET/CT-based radiomics models, especially LR and RF models, demonstrate good performance in predicting HER2 expression status in patients with GC and can be used to preselect patients who may benefit from HER2-targeted therapy.


Subject(s)
Radiomics , Stomach Neoplasms , Humans , Stomach Neoplasms/diagnostic imaging , Stomach Neoplasms/genetics , Pilot Projects , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography
7.
Food Funct ; 14(14): 6654-6664, 2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37401724

ABSTRACT

Cruciferous vegetable microgreens, such as red cabbage microgreens (RCMG), are of special interest due to their well-documented health-promoting effects compared to their mature counterparts. However, little is known of the biological effects of microgreens. The present study used a rodent diet-induced obesity model to investigate the effect of consuming RCMG on the gut microbiota. We found that the consumption of RCMG exerted profound impacts on the microbial composition in mice. Specifically, the species diversity of mice on both low fat (LF) and high fat (HF) diets was significantly increased by the consumption of RCMG. In comparison with the LF control group, the intake of RCMG increased the gut Firmicutes/Bacteroidetes (F/B) ratio. Furthermore, an unidentified species of the Clostridiales order, increased by RCMG, was found to be negatively correlated with the hepatic cholesterol ester level in mice (r = -0.43, p < 0.05). In addition, RCMG significantly inhibited HF diet-induced elevation of the genus AF12, of which the abundance was positively correlated with the body weight gain (r = 0.52, p < 0.01) and fecal bile acid in mice (r = 0.59, p < 0.01). Overall, our results demonstrated that the consumption of RCMG in the diet can alter the gut microbiota, and attenuation of HF diet-induced body weight gain and altered cholesterol metabolism may be mediated through regulation of the gut microbiota.


Subject(s)
Brassica , Gastrointestinal Microbiome , Mice , Animals , Obesity/etiology , Obesity/metabolism , Diet, High-Fat/adverse effects , Weight Gain , Risk Factors , Mice, Inbred C57BL
8.
Foods ; 13(1)2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38201113

ABSTRACT

Red cabbage (RC), a cruciferous vegetable rich in various bioactive substances, can significantly reduce the risk factors of several non-communicable diseases, but the mechanism underlying the biological effects of RC remains unclear. Furthermore, mechanisms that operate through the regulation of gut microbiota also are not known. Given the relationships between diet, gut microbiota, and health, a diet-induced mice obesity model was used to elucidate the influence of RC on gut microbial composition and bacteria-bacteria interactions in mice. After 24 h of dietary intervention, a high-fat (HF) diet with the intake of RC led to increased Firmicutes/Bacteroidetes (F/B) ratios in the feces of mice. RC also reduced the relative abundance of Bifidobacteria, Lactobacillus, and Akkermansia muciniphila in mice fed a low-fat (LF) diet. After 8-weeks of dietary intervention, RC significantly changed the structure and the ecological network of the gut microbial community. Particularly, RC inhibited an HF-diet-induced increase in AF12 in mice, and this genus was positively correlated with body weight, low-density lipoprotein level, and fecal bile acid of mice. Unclassified Clostridiales, specifically increased via RC consumption, were also found to negatively correlate with hepatic free cholesterol levels in mice. Overall, our results demonstrated that RC modulating gut microbial composition and interactions are associated with the attenuation of HF-diet-induced body weight gain and altered cholesterol metabolism in mice.

9.
Front Immunol ; 13: 947341, 2022.
Article in English | MEDLINE | ID: mdl-36524114

ABSTRACT

Background: Regulatory T cells (Tregs) have been found to play crucial roles in immune tolerance. However, the status of Tregs in refractory rheumatoid arthritis (RA) is still unclear. Moreover, low-dose interleukin-2 (IL-2) has been reported to selectively promote the expansion of Tregs. This study investigated the status of CD4+ Tregs and low-dose IL-2 therapy in patients with refractory RA. Methods: The absolute number of CD4+CD25+FOXP3+ Treg (CD4 Treg), CD4+IL17+ T (Th17), and other subsets in peripheral blood (PB) from 41 patients with refractory RA and 40 healthy donors was characterized by flow cytometry combined with an internal microsphere counting standard. Twenty-six patients with refractory RA were treated with daily subcutaneous injections of 0.5 million IU of human IL-2 for five consecutive days. Then, its effects on CD4 Treg and Th17 cells in PB were analyzed. Results: A decrease in the absolute number of PB CD4 Tregs rather than the increase in the number of Th17 was found to contribute to an imbalance between Th17 and CD4 Tregs in these patients, suggesting an essential role of CD4 Tregs in sustained high disease activity. Low-dose IL-2 selectively increased the number of CD4 Tregs and rebalanced the ratio of Th17 and CD4 Tregs, leading to increased clinical symptom remission without the observed side effects. Conclusions: An absolute decrease of PB CD4 Tregs in patients with refractory RA was associated with continuing disease activation but not the increase of Th17 cells. Low-dose IL-2, a potential therapeutic candidate, restored decreased CD4 Tregs and promoted the rapid remission of patients with refractory RA without overtreatment and the observed side effects. Clinical trial registration: http://www.chictr.org.cn/showproj.aspx?proj=13909, identifier ChiCTR-INR-16009546.


Subject(s)
Arthritis, Rheumatoid , Interleukin-2 , T-Lymphocytes, Regulatory , Humans , Arthritis, Rheumatoid/drug therapy , Immune Tolerance , Interleukin-2/therapeutic use , Interleukin-2/pharmacology , T-Lymphocytes, Regulatory/drug effects , T-Lymphocytes, Regulatory/metabolism , Th17 Cells
10.
Front Oncol ; 12: 1013066, 2022.
Article in English | MEDLINE | ID: mdl-36387126

ABSTRACT

Breast cancer is the most common malignant tumor in adult women. Its common metastatic sites are lymph nodes, bones, lungs, the liver, and the brain. It is so rare for a patient with breast cancer to have metastases of the gastrointestinal tract, peritoneum, and ovary at the same time that the clinical reporting rate is low. We present a case of a 61-year-old woman who underwent right mastectomy and chemoradiotherapy 3 years ago because of mixed invasive ductal-lobular breast cancer. This time, she came to the hospital due to the symptom of stomach discomfort for 2 weeks. The gastroscopy biopsy result showed gastric metastasis from breast cancer. Then, 18F-FDG imaging and 68Ga-FAPI PET/CT imaging were performed for further diagnosis; 68Ga-FAPI PET/CT demonstrated a significantly elevated FAPI activity in the thickened gastric wall, peritoneum, and bilateral adnexal areas, which was superior to that of 18F-FDG. Finally, a biopsy of suspicious lesions was taken for pathological and histochemical examination, which confirmed that, in addition to the gastric metastasis, the peritoneum and bilateral ovaries were all consistent with metastatic breast cancer.

12.
Front Psychol ; 13: 913026, 2022.
Article in English | MEDLINE | ID: mdl-35712200

ABSTRACT

Using the theoretical perspective of market stakeholders, we analyze the impact of external innovations from upstream enterprises, downstream enterprises, and competitors on the exports of private enterprises. By using data from the China Industrial Enterprises Database, we find that external innovations from upstream suppliers, downstream customers and horizontal competitors show positive impacts on the export propensity, intensity and scale for private enterprises. The results of a heterogeneity analysis indicate that the positive relationships between the external innovations of stakeholders and the exports of private enterprises are stable in different factor-intensive industries. In addition, while the exports of private enterprises are positively correlated with their external innovations in the eastern and central regions, this relationship is not significant in the western region. Further, the mechanism analysis confirms that enterprise innovation played an important mediating role for the external innovations of stakeholders to promote the exports of private enterprises. This study provides useful policy implications for enhancing the export competitiveness of private enterprises.

13.
Ecotoxicol Environ Saf ; 236: 113468, 2022 May 01.
Article in English | MEDLINE | ID: mdl-35378400

ABSTRACT

Arsenic, an identified environmental toxicant, poses threats to the health of human beings through contaminated water and food. Recently, increasing reports focused on arsenic-induced nerve damage, however, the underlying mechanism remains elusive. Microglia are important immune cells in the nervous system, which produce a large number of inflammatory factors including TNF-α when activated. Recent reports indicated that TNF-α is involved in the process of necroptosis, a new type of programmed cell death discovered recently. Although there were evidences suggested that arsenic could induce both microglia activation and TNF-α production in the nervous system, the mechanism of arsenic-induced neurotoxicity due to microglia activation is rarely studied. In addition, the role of microglia-derived TNF-α in response to arsenic exposure in necroptosis has not been documented before. In this study, we found that arsenite induced microglial activation through p38 MAPK signaling pathway, leading to the production of TNF-α. Microglia-derived TNF-α further induced necroptosis in the neuronal cells. Our findings suggested that necroptosis induced by microglia-derived TNF-α upon arsenite exposure partially played a role in arsenic-induced cell death which underlie the fundamental event of arsenic-related neurotoxicity.


Subject(s)
Arsenic , Arsenites , Arsenic/metabolism , Arsenic/toxicity , Arsenites/metabolism , Arsenites/toxicity , Humans , Microglia/metabolism , Necroptosis , Tumor Necrosis Factor-alpha/metabolism
14.
Dis Markers ; 2022: 9651092, 2022.
Article in English | MEDLINE | ID: mdl-35082934

ABSTRACT

OBJECTIVE: Heart failure and ventricular remodeling after acute myocardial infarction (AMI) are important factors affecting the prognosis of patients. Therefore, we expected to explore the therapeutic target of AMI by studying the effect of death-associated protein kinase 1 (DAPK1) on AMI rat model. MATERIALS AND METHODS: We used male Sprague-Dawley rats to make AMI model, and after 1, 3, 7, and 14 d, we detect the success rate of modeling and the expression change of DAPK1 through 2, 3, 5-triphenyl tetrazolium chloride staining, myocardial injury markers detection, echocardiographic detection, and histological experiment. In addition, we determined the effect of DAPK1 on AMI by subcutaneous injection of the DAPK1 inhibitor (TC-DAPK 6). The effect of DAPK1 on cardiomyocytes has also been verified in cell experiments on H9c2 cells. RESULTS: The expression of DAPK1 in AMI rats was significantly higher than that in sham group, and it increased with time. The expression of inflammatory factors (interleukin- (IL-) 1ß, IL-6, and tumor necrosis factor-α) in AMI rats treated by TC-DAPK 6 was reduced. In addition, TC-DAPK 6 also reduced the activity of malonaldehyde and increased the activities of superoxide dismutase, glutathione, and catalase. The expression of antioxidant molecules such as peroxiredoxin1/4 and glutathione peroxidase1/3 was also promoted by TC-DAPK 6. In H9c2 cells, TC-DAPK 6 also reduced its oxidative stress level. CONCLUSIONS: The increase of DAPK1 may be related to the pathogenesis of AMI. DAPK1 inhibitors protect cardiomyocytes from AMI-induced myocardial injury by reducing levels of inflammation and oxidative stress in myocardial tissue and cells.


Subject(s)
Death-Associated Protein Kinases/metabolism , Inflammation/metabolism , Myocardial Infarction/metabolism , Oxidative Stress/drug effects , Animals , Antioxidants/metabolism , Disease Models, Animal , Male , Rats , Rats, Sprague-Dawley
15.
Article in English | MEDLINE | ID: mdl-34659427

ABSTRACT

BACKGROUND: Ovarian cancer (OC) is the top of the aggressive malignancies in females with a poor survival rate. However, the roles of immune-related pseudogenes (irPseus) in the immune infiltration of OC and the impact on overall survival (OS) have not been adequately studied. Therefore, this study aims to identify a novel model constructed by irPseus to predict OS in OC and to determine its significance in immunotherapy and chemotherapy. METHODS: In this study, with the use of The Cancer Genome Atlas (TCGA) combined with Genotype-Tissue Expression (GTEx), 55 differentially expressed irPseus (DEirPseus) were identified. Then, we constructed 10 irPseus pairs with the help of univariate, Lasso, and multivariate Cox regression analysis. The prognostic performance of the model was determined and measured by the Kaplan-Meier curve, a time-dependent receiver operating characteristic (ROC) curve. RESULTS: After dividing OC subjects into high- and low-risk subgroups via the cut-off point, it was revealed that subjects in the high-risk group had a shorter OS. The multivariate Cox regression performed between the model and multiple clinicopathological variables revealed that the model could effectively and independently predict the prognosis of OC. The prognostic model characterized infiltration by various kinds of immune cells and demonstrated the immunotherapy response of subjects with cytotoxic lymphocyte antigen 4 (CTLA4), anti-programmed death-1 (PD-1), and anti-PD-ligand 1 (PD-L1) therapy. A high risk score was related to a higher inhibitory concentration (IC50) for etoposide (P=0.0099) and mitomycin C (P=0.0013). CONCLUSION: It was the first study to identify a novel signature developed by DEirPseus pairs and verify the role in predicting OS, immune infiltrates, immunotherapy, and chemosensitivity. The irPseus are vital factors predicting the prognosis of OC and could act as a novel potential treatment target.

16.
J Food Sci ; 86(10): 4511-4521, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34535907

ABSTRACT

Intramuscular fat (IMF) is an important factor affecting meat quality, but lipid and metabolic profiles of donkey meat remain unclear. The present study was conducted to investigate lipid characteristics in different parts of Dezhou donkey using lipidomics. The results show that IMF was more abundant in longissimus dorsi muscle (LDM) than rump muscle (RM) and hamstring muscle (HM), and mainly composed of triglycerides (TGs) rich in saturated fatty acid (SFAs) and monounsaturated fatty acid (MUFAs). A total of 1143 lipids belonging to 14 subclasses were identified in donkey meat, of which 73 lipids (23 upregulated and 50 downregulated) including glycerolipids (GLs), glycerophospholipids (GPs) and sphingolipids (SPs) were significantly different and are therefore potential biomarkers in LDM versus RM versus HM analyses (variable importance in projection >1, p < 0.05). Notably, 21 TGs upregulated in LDM were rich in MUFAs at sn-1 and SFAs at 2 and 3 positions of TG. Donkey muscle accumulated far more SFAs at the sn-3 position of TG, while more SFAs were present at the sn-1 positions of phosphatidylcholine (PC) and phosphatidylethanolamine (PE), and the percentages of SFAs at the three positions in TG, PC, and PE in the LDM group were much higher. The abundance of MUFAs at the sn-2 positions of TG, PC, and PE was significantly greater than in sn-1 or 3 positions, and the percentages of 18:1n-9 at the sn-1 and 2 position of TGs in LDM were significantly higher than in RM and HM groups. Polyunsaturated fatty acids (e.g.,18:2n-6, 18:3n-3, and 20:4n-6) tended to occur at the sn-1 position in TG, but at the sn-2 position in PC and PE. Significantly differential lipids were mainly enriched in GP, GL, and SP pathways, all considered key pathways for regulating IMF. The results reveal the components, structures and metabolic pathways of lipid molecules in donkey meat, and provide novel insight into the development of donkey meat products and accurate regulation of IMF. PRACTICAL APPLICATION: Intramuscular fat (IMF) is an important factor affecting meat quality, which is directly related to meat flavor, juiciness, and tenderness, but lipid and metabolic profiles of IMF remain unclear. The current results provide basic information for the development of donkey meat products, and broaden our understanding of the regulation of IMF.


Subject(s)
Equidae , Food Analysis , Lipidomics , Lipids , Meat , Animals , Chromatography, Liquid , Food Analysis/methods , Lipids/chemistry , Meat/analysis , Muscle, Skeletal/chemistry , Tandem Mass Spectrometry
17.
J Hazard Mater ; 417: 125997, 2021 09 05.
Article in English | MEDLINE | ID: mdl-34229406

ABSTRACT

Arsenic is the leading toxicant of hazardous environmental chemicals, which is linked with neurotoxicity including cognitive dysfunction, neurodevelopmental alterations and neurodegenerative disorders. It has been suggested that sustained pro-inflammatory response is one of the triggering factors of arsenic-induced neurotoxicity. Microglia, the immune cells in the central nervous system, response to physiological and pathological stress, and release a large array of pro-inflammatory cytokines if activated excessively. Several studies indicated that arsenic was capable of inducing microglia activation, however, the role of the subsequently released pro-inflammatory cytokines in arsenic-induced neurotoxicity remains to be elucidated. Our findings demonstrated that arsenic-induced cognitive dysfunction, microglia activation, up-regulation and release of IL-1ß and ER stress-mediated apoptosis could be attenuated by minocycline, a recognized inhibitor of microglia activation. In addition, the IL-1 receptor antagonist IL-1ra diminished arsenic-induced activation of ER stress-mediated apoptotic pathway PERK/eIF2α/ATF4/CHOP and neuronal apoptosis. Our findings provided evidences that arsenic-induced microglia activation also contributed to neuronal apoptosis through pro-inflammatory cytokine. Microglia-derived IL-1ß promoted hippocampal neuronal apoptosis through ER stress-mediated PERK/eIF2α/ATF4/CHOP apoptotic pathway. Neuronal apoptosis induced by prolonged activation of microglia was partially involved in the arsenic-induced cognitive dysfunction.


Subject(s)
Arsenic , Eukaryotic Initiation Factor-2 , Activating Transcription Factor 4/genetics , Activating Transcription Factor 4/metabolism , Apoptosis , Arsenic/toxicity , Endoplasmic Reticulum Stress , Eukaryotic Initiation Factor-2/genetics , Eukaryotic Initiation Factor-2/metabolism , Microglia/metabolism , Signal Transduction , Transcription Factor CHOP/genetics , Transcription Factor CHOP/metabolism
18.
PLoS One ; 16(3): e0248957, 2021.
Article in English | MEDLINE | ID: mdl-33755708

ABSTRACT

The characteristics and evolution of pulmonary fibrosis in patients with coronavirus disease 2019 (COVID-19) have not been adequately studied. AI-assisted chest high-resolution computed tomography (HRCT) was used to investigate the proportion of COVID-19 patients with pulmonary fibrosis, the relationship between the degree of fibrosis and the clinical classification of COVID-19, the characteristics of and risk factors for pulmonary fibrosis, and the evolution of pulmonary fibrosis after discharge. The incidence of pulmonary fibrosis in patients with severe or critical COVID-19 was significantly higher than that in patients with moderate COVID-19. There were significant differences in the degree of pulmonary inflammation and the extent of the affected area among patients with mild, moderate and severe pulmonary fibrosis. The IL-6 level in the acute stage and albumin level were independent risk factors for pulmonary fibrosis. Ground-glass opacities, linear opacities, interlobular septal thickening, reticulation, honeycombing, bronchiectasis and the extent of the affected area were significantly improved 30, 60 and 90 days after discharge compared with at discharge. The more severe the clinical classification of COVID-19, the more severe the residual pulmonary fibrosis was; however, in most patients, pulmonary fibrosis was improved or even resolved within 90 days after discharge.


Subject(s)
Artificial Intelligence , COVID-19/pathology , Pulmonary Fibrosis/diagnosis , Thorax/diagnostic imaging , COVID-19/complications , COVID-19/virology , Female , Humans , Image Processing, Computer-Assisted , Interleukin-6/metabolism , Male , Middle Aged , Patient Discharge , Pulmonary Fibrosis/etiology , Risk Factors , SARS-CoV-2/isolation & purification , Severity of Illness Index , Tomography, X-Ray Computed
19.
Signal Transduct Target Ther ; 6(1): 58, 2021 02 10.
Article in English | MEDLINE | ID: mdl-33568628

ABSTRACT

Treatment of severe Coronavirus Disease 2019 (COVID-19) is challenging. We performed a phase 2 trial to assess the efficacy and safety of human umbilical cord-mesenchymal stem cells (UC-MSCs) to treat severe COVID-19 patients with lung damage, based on our phase 1 data. In this randomized, double-blind, and placebo-controlled trial, we recruited 101 severe COVID-19 patients with lung damage. They were randomly assigned at a 2:1 ratio to receive either UC-MSCs (4 × 107 cells per infusion) or placebo on day 0, 3, and 6. The primary endpoint was an altered proportion of whole lung lesion volumes from baseline to day 28. Other imaging outcomes, 6-minute walk test (6-MWT), maximum vital capacity, diffusing capacity, and adverse events were recorded and analyzed. In all, 100 COVID-19 patients were finally received either UC-MSCs (n = 65) or placebo (n = 35). UC-MSCs administration exerted numerical improvement in whole lung lesion volume from baseline to day 28 compared with the placebo (the median difference was -13.31%, 95% CI -29.14%, 2.13%, P = 0.080). UC-MSCs significantly reduced the proportions of solid component lesion volume compared with the placebo (median difference: -15.45%; 95% CI -30.82%, -0.39%; P = 0.043). The 6-MWT showed an increased distance in patients treated with UC-MSCs (difference: 27.00 m; 95% CI 0.00, 57.00; P = 0.057). The incidence of adverse events was similar in the two groups. These results suggest that UC-MSCs treatment is a safe and potentially effective therapeutic approach for COVID-19 patients with lung damage. A phase 3 trial is required to evaluate effects on reducing mortality and preventing long-term pulmonary disability. (Funded by The National Key R&D Program of China and others. ClinicalTrials.gov number, NCT04288102.


Subject(s)
COVID-19/therapy , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , SARS-CoV-2 , Umbilical Cord , Aged , Allografts , COVID-19/mortality , COVID-19/physiopathology , Double-Blind Method , Female , Humans , Male , Middle Aged , Treatment Outcome
20.
Ann Thorac Surg ; 111(2): 576-585, 2021 02.
Article in English | MEDLINE | ID: mdl-32652066

ABSTRACT

BACKGROUND: Neurologic deficit remains a major complication after cardiovascular surgeries with deep hypothermic circulatory arrest (DHCA). We hypothesized that exosomes derived from bone marrow mesenchymal stem cells (MSCs) may conduct cerebral protection against prolonged DHCA in rats, and overexpressing microRNA-214 (miR-214) may further enhance the neuroprotection. METHODS: Cultured MSCs were transfected with lentivirus vectors containing pre-miR-214 or control vectors. Exosomes were isolated by centrifugation. The DHCA was conducted for 60 minutes when the pericranial temperature was cooled to 18°C. Exosomes from MSCs, MSCs transfected with control vectors, or pre-miR-214 were administered by intracerebroventricular injection 1 day before DHCA. RESULTS: Transfection of pre-miR-214 significantly enhanced the miR-214 expression in exosomes from MSCs. All exosome-pretreating groups exhibited lower levels of interleukin-1ß and tumor necrosis factor-α, higher capillary density, more significant neurogenesis and angiogenesis, and more normal neurons in the hippocampus than those of the control group. Exosome pretreatment markedly improved the spatial learning and memory function and vestibulomotor function. Compared with exosomes from MSCs or MSCs transfected with control vectors, miR-214-enriched exosomes remarkably enhanced the miR-214 level and expressions of phosphor-protein kinase B and Bcl-2, inhibited expressions of phosphate and tension homology, Bcl-2 interacting mediator of cell death, Bcl-2-associated X protein, and cleaved Caspase-3, and increased the number of survival neurons. Significantly better neurologic functions were also detected in rats pretreated with miR-214-enriched exosomes. CONCLUSIONS: Exosomes from MSCs conduct powerful neuroprotection against cerebral injury induced by DHCA, which can be further enhanced by genetic modification of the exosomes to overexpress miR-214.


Subject(s)
Circulatory Arrest, Deep Hypothermia Induced/adverse effects , Exosomes/physiology , MicroRNAs/physiology , Neuroprotection , Animals , Caspase 3/metabolism , Cells, Cultured , Hippocampus/chemistry , Hippocampus/pathology , Interleukin-1beta/analysis , Male , Mesenchymal Stem Cells/ultrastructure , Neurogenesis , Rats , Rats, Sprague-Dawley , Tumor Necrosis Factor-alpha/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...