Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nano Lett ; 15(5): 3212-6, 2015 May 13.
Article in English | MEDLINE | ID: mdl-25897889

ABSTRACT

A device architecture for electrically configurable graphene field-effect transistor (GFET) using a graded-potential gate is present. The gating scheme enables a linearly varying electric field that modulates the electronic structure of graphene and causes a continuous shift of the Dirac points along the channel of GFET. This spatially varying electrostatic modulation produces a pseudobandgap observed as a suppressed conductance of graphene within a controllable energy range. By tuning the electrical gradient of the gate, a GFET device is reversibly transformed between ambipolar and n- and p-type unipolar characteristics. We further demonstrate an electrically programmable complementary inverter, showing the extensibility of the proposed architecture in constructing logic devices based on graphene and other Dirac materials. The electrical configurable GFET might be explored for novel functionalities in smart electronics.

2.
J Am Chem Soc ; 136(47): 16497-507, 2014 Nov 26.
Article in English | MEDLINE | ID: mdl-25375316

ABSTRACT

Cruciform-like molecules with two orthogonally placed π-conjugated systems have in recent years attracted significant interest for their potential use as molecular wires in molecular electronics. Here we present synthetic protocols for a large selection of cruciform molecules based on oligo(phenyleneethynylene) (OPE) and tetrathiafulvalene (TTF) scaffolds, end-capped with acetyl-protected thiolates as electrode anchoring groups. The molecules were subjected to a comprehensive study of their conducting properties as well as their photophysical and electrochemical properties in solution. The complex nature of the molecules and their possible binding in different configurations in junctions called for different techniques of conductance measurements: (1) conducting-probe atomic force microscopy (CP-AFM) measurements on self-assembled monolayers (SAMs), (2) mechanically controlled break-junction (MCBJ) measurements, and (3) scanning tunneling microscopy break-junction (STM-BJ) measurements. The CP-AFM measurements showed structure-property relationships from SAMs of series of OPE3 and OPE5 cruciform molecules; the conductance of the SAM increased with the number of dithiafulvene (DTF) units (0, 1, 2) along the wire, and it increased when substituting two arylethynyl end groups of the OPE3 backbone with two DTF units. The MCBJ and STM-BJ studies on single molecules both showed that DTFs decreased the junction formation probability, but, in contrast, no significant influence on the single-molecule conductance was observed. We suggest that the origins of the difference between SAM and single-molecule measurements lie in the nature of the molecule-electrode interface as well as in effects arising from molecular packing in the SAMs. This comprehensive study shows that for complex molecules care should be taken when directly comparing single-molecule measurements and measurements of SAMs and solid-state devices thereof.

SELECTION OF CITATIONS
SEARCH DETAIL
...