Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
Pest Manag Sci ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775404

ABSTRACT

BACKGROUND: The beet webworm, Loxostege sticticalis, a worldwide pest of many crops, performs a seasonal migration, causing periodic outbreaks in Asia, Europe and North America. Although long-distance migration is well documented in China, patterns of transboundary migration among China, Russia and Mongolia are largely unknown. We performed a phase analysis of L. sticticalis periodic outbreaks among three countries based on 30 years of historical population data, analyzed the wind systems during migration over boundary regions, and traced the migratory routes in a case study of outbreaks in 2008 by trajectory simulation. RESULTS: Highly synchronized outbreak years of L. sticticalis were observed between China and Mongolia, China and eastern Siberia, China and western Siberia, Mongolia and eastern Siberia, eastern Siberia and western Siberia from 1978 to 2008, indicating possible transboundary migration between these regions. Winds at 300-600 m altitude, where adult migration usually occurs, also showed a high probability of northwestern winds in Haila'er (China), Chita (Russia) and Choybalsan (Mongolia), favoring successful adult migration from these areas to northern and northeastern China. Back trajectory analysis further showed that the first-generation adults that caused the severe outbreak of second-generation larvae in 2008 originated from eastern Siberia, eastern Mongolia, and the boundary regions of China-Russia and China-Mongolia. CONCLUSION: Our findings demonstrated that the source of L. sticticalis outbreaks in northern China was closely related to the outbreaks in Siberia and Mongolia via long-distance transboundary windborne migration. This information will help guide international monitoring and management strategies against this notorious pest. © 2024 Society of Chemical Industry.

2.
Insects ; 15(5)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38786860

ABSTRACT

The fall armyworm (FAW), Spodoptera frugiperda, seriously threatens food and cash crops. Maize, wheat, and even rice damage by FAWs have been reported in many areas of China. It is urgent to clarify the mechanism which FAWs adapt to different feeding hosts and develop effective control technologies. Two-sex life tables and 16s rDNA sequencing were used to determine the host fitness and gut microbial diversity of FAWs when fed four different food types. Considering the life history parameters, pupa weight, and nutrient utilization indexes, the host fitness of FAWs when fed different food types changed in descending order as follows: artificial diet, maize, wheat, and rice. The gut microbial composition and the diversity of FAWs when fed different food types were significantly different, and those changes were driven by low-abundant bacteria. The gut microbes of FAWs that were fed with maize had the highest diversity. The functions of the gut microbes with significant abundance differences were enriched in nutrient and vitamin metabolism and other pathways that were closely related to host adaptation. Furthermore, we identified five genera (Acinetobacter, Variovorax, Pseudomonas, Bacillus, and Serratia) and one genus (Rahnella) that were positively and negatively correlated with the host fitness, respectively. This study revealed the possible role of gut microbes in the host adaptation of FAWs.

3.
Int J Biol Macromol ; 264(Pt 2): 130778, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38467221

ABSTRACT

High population density has been shown to alter insect prophylactic immunity. Toll-Spätzle pathway performs a key function in insect innate immune response. To determine the role of Toll and Spätzle, two main components of Toll-Spätzle pathway, in the density-dependent prophylaxis of Mythimna separata. We identified full-length cDNA encoding the Toll-1 and Spätzle-4 genes in M. separata (designed MsToll-1 and Ms Spätzle-4). Both MsToll-1 and MsSpätzle-4 were expressed throughout all developmental stages. MsToll-1 expression was highly in fat body and brain and MsSpätzle-4 was highly expressed in brain and Malpighian tubule. With increased larval density, MsToll-1 expression was markedly up-regulated. MsSpätzle-4 expression was found to be raised in larvae that were fed in high density (5 and 10 larvae per jar). Co-immunoprecipitation assays demonstrated that MsToll-1 interacted with MsSpätzle-4. Immune-related genes transcriptions were considerably reduced in high-density larvae MsToll-1 (or MsSpätzle-4) was silenced by dsRNA injection. Meanwhile, a discernible reduction in the survival rate of the larvae exposed to Bacillus thuringiensis infection with silence of MsToll-1 (or MsSpätzle-4) was observed. This study implies that prophylactic immunity was influenced by crowded larvae via modulating the Toll-Spätzle pathway in M. separata and allow for a new understanding of into density-dependent prophylaxis in insects.


Subject(s)
Insect Proteins , Moths , Animals , Larva/metabolism , Spodoptera/metabolism , Insect Proteins/metabolism , Moths/genetics , Immunity, Innate/genetics
4.
Insects ; 14(12)2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38132607

ABSTRACT

The division of labor among workers is a defining characteristic of social insects and plays a pivotal role in enhancing the competitive advantage of their colony. Juvenile hormone (JH) has long been hypothesized to be the essential driver in regulating the division of labor due to its ability to accelerate behavioral transitions in social insects, such as honeybees. The regulation of behavioral transitions by JH in the red imported fire ant (RIFA), Solenopsis invicta, a typical social pest, is unclear. Through video capture and analysis, we investigated the effects of the juvenile hormone analogue (JHA) methoprene on brood care, phototaxis behavior, and threat responsiveness of RIFA nurse workers. Our results showed that the JHA application significantly reduced the time and frequency of brood care behavior by nurse workers while increasing their walking distance and activity time in the light area. Additionally, the application of JHA made ants become excited, indicating a significant improvement in their activity level (movement distance, time, and speed). Furthermore, it was observed that the application of JHA did not affect the threat responsiveness of nurse workers towards stimuli (nestmates or non-nestmates). Our study demonstrates that the application of JHA reduced brood care behavior and enhanced phototaxis in nurse workers, which may reveal the role of JH in facilitating behavioral transitions in RIFA from intranidal tasks to extranidal activity. This study provides an experimental basis for further elucidating the mechanism underlying the division of labor in social insects.

5.
Insects ; 14(11)2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37999063

ABSTRACT

Insect innate immunity is composed of cellular and humoral reactions, the former acting via circulating hemocytes and the latter via immune signaling that lead to the production of antimicrobial peptides and phenol oxidase-driven melanization. Cellular immunity involves direct interactions between circulating hemocytes and invaders; it includes internalization and killing microbes (phagocytosis) and formation of bacterial-laden microaggregates which coalesce into nodules that are melanized and attached to body walls or organs. Nodulation can entail investing millions of hemocytes which must be replaced. We hypothesized that biologically costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae of fall armyworms, Spodoptera frugiperda, that were allowed to fever. We tested our hypothesis by infecting larvae with the Gram-negative bacterium, Serratia marcescens, placing them in thermal gradients (TGs) and recording their selected body temperatures. While control larvae selected about 30 °C, the experimental larvae selected up 41 °C. We found that 4 h fevers, but not 2, 6 or 24 h fevers, led to increased larval survival. Co-injections of S. marcescens with the prostaglandin (PG) biosynthesis inhibitor indomethacin (INDO) blocked the fevers, which was reversed after co-injections of SM+INDO+Arachidonic acid, a precursor to PG biosynthesis, confirming that PGs mediate fever reactions. These and other experimental outcomes support our hypothesis that costly hemocyte-based immunity is traded off for behavioral fevers in infected larvae under appropriate conditions.

6.
Insects ; 14(10)2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37887793

ABSTRACT

Beet webworms, Loxostege sticticalis L. (Lepidoptera: Pyralidae), are one of the most destructive pest insects in northern China, and their populations outbreak periodically. Developing an indicator that defines the ending and beginning of the occurrence period cycle is urgent for the population forecast and theoretical study. The sex ratio can be a primary pathway through which species regulate population size. We measured the maximum mating potential of both females and males and the population net reproductive rate under different sex ratios (e.g., 3:1, 2:1, 1:1, 1:2, 1:3). The maximum mating frequency of males was 2.91 times that of females. The progeny contribution per mating decreased with increased mating times in males. The variation in population net reproductive rate affected by the sex ratio fits the parabolic curve analysis and peaked at 1.82 for females vs. males. Our results illustrate the quantitative connection phenomenon shown by the historical data: population outbreaks occur at a sex ratio of two or more and collapse at a sex rate lower than one. Simultaneously, the sex ratio may be utilized as a definite indicator for the beginning and end of the future occurrence cycle in the beet webworm.

7.
Insects ; 14(8)2023 Aug 05.
Article in English | MEDLINE | ID: mdl-37623403

ABSTRACT

The application of green manure is crucial for achieving sustainable agriculture and animal husbandry, but pest management is often overlooked. Conducting a risk assessment for insect pests in green manure is essential. The beet webworm, Loxostege sticticalis, a polyphagous insect, is currently experiencing an outbreak in northern China, and represents a significant migratory pest. A two-sex life table and flight mill test approach was used to comprehensively evaluate the effects of three major legume green manure crops (Pisum sativam, Vicia sativa, and Vicia villosa) on the growth, development, fecundity, and flight ability of L. sticticalis in China. Our findings indicate that L. sticticalis cannot utilize V. villosa for generational development. L. sticticalis shows reduced performance on P. sativam and V. sativa compared to its suitable host Chenopodium album. However, both the population parameters (R0, r, λ, and T) and the population prediction results suggest that L. sticticalis can adapt to P. sativam and V. sativa. In the process of promoting green manure, careful consideration should be given to the selection of appropriate green manure varieties and the implementation of effective pest control measures during their planting. Our findings lay the groundwork for the promotion of green manure and implementation of an ecological management plan for L. sticticalis.

8.
Int J Biol Macromol ; 235: 123915, 2023 Apr 30.
Article in English | MEDLINE | ID: mdl-36871694

ABSTRACT

The oriental armyworm Mythimna separata is a polyphagous, migratory corn pest in China and other Asian countries. Transgenic Bacillus thuringiensis (Bt) corn may effectively control this insect pest. Several reports have suggested that ATP-binding cassette (ABC) transporter proteins may act as receptors that bind Bt toxins. However, our knowledge about ABC transporter proteins in M. separata is limited. We identified 43 ABC transporter genes in the M. separata genome by bioinformatics prediction. Evolutionary tree analysis grouped these 43 genes into 8 subfamilies, ABCA to ABCH. Among the 13 ABCC subfamily genes, the transcript levels of MsABCC2 and MsABCC3 were upregulated. In addition, RT-qPCR analyses of these two potentials showed that both were predominantly expressed in the midgut tissue. Knock-down of MsABCC2, but not MsABCC3, decreased Cry1Ac susceptibility as indicated by increased larval weight and reduced larval mortality. This suggested that MsABCC2 might play a more important role in Cry1Ac toxicity and that it is a putative Cry1Ac receptor in M. separata. Together, these findings provide unique and valuable information for future elucidating of the role of ABC transporter genes in M. separata, which is highly valuable and important for the long-term application of Bt insecticidal protein.


Subject(s)
Bacillus thuringiensis , Moths , Platyhelminths , Animals , Spodoptera/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Moths/genetics , Moths/metabolism , Larva/genetics , Larva/metabolism , Insecta/metabolism , Bacillus thuringiensis/genetics , Bacillus thuringiensis/metabolism , Endotoxins/metabolism
9.
Insect Sci ; 30(3): 650-660, 2023 Jun.
Article in English | MEDLINE | ID: mdl-36305760

ABSTRACT

The oriental armyworm, Mythimna separata, is a major long-distance migratory insect pest of grain crops in China and other Asian countries. Migratory flights and reproductive behavior usually occur at night, regulated by a circadian rhythm. However, knowledge about the linkages between adult flight, reproduction, and clock genes is still incomplete. To fill this important gap in our knowledge, a clock gene (designated Msper) was identified and phylogenetic analysis indicated that the encoded protein (MsPER) was highly similar to PER proteins from other insect species. Quantitative RT-PCR assays demonstrated that significantly different spatiotemporal and circadian rhythmic accumulations of mRNA encoding MsPER occurred during development under steady 14 h : 10 h light : dark conditions. The highest mRNA accumulation occurred in adult antennae and the lowest in larvae. Msper was expressed rhythmically in adult antennae, relatively less in photophase and more entering scotophase. Injecting small interference RNA (siRNA) into adult heads effectively knocked down Msper mRNA levels within 72 h. Most siRNA-injected adults reduced their evening flight activity significantly and did not exhibit a normal evening peak of flight activity. They also failed to mate and lay eggs within 72 h. Adult mating behavior was restored to control levels by 72 h post injection. We infer that Msper is a prominent clock gene that acts in regulating adult migratory flight and mating behaviors of M. separata. Because of its influence on migration and mating, Msper may be a valuable gene to target for effective management of this migratory insect.


Subject(s)
Moths , Animals , Spodoptera/genetics , Phylogeny , RNA, Double-Stranded , Reproduction , RNA, Small Interfering , RNA, Messenger
10.
Cell Rep ; 41(12): 111843, 2022 12 20.
Article in English | MEDLINE | ID: mdl-36543122

ABSTRACT

The oriental armyworm, Mythimna separata, is known for its long-distance seasonal migration and environment-dependent phase polymorphisms. Here, we present a chromosome-level genome reference and integrate multi-omics, functional genetics, and behavioral assays to explore the genetic bases of the hallmark traits of M. separata migration. Gene family comparisons show expansion of gustatory receptor genes in this cereal crop pest. Functional investigation of magnetoreception-related genes and associated flight behaviors suggest that M. separata may use the geomagnetic field to guide orientation in its nocturnal flight. Comparative transcriptome characterizes a suite of genes that may confer the observed plasticity between phases, including genes involved in protein processing, hormone regulation, and dopamine metabolism. We further report molecular signatures that underlie the dynamic regulation of a migratory syndrome coordinating reproduction and flight. Our study yields insights into environment-dependent developmental plasticity in moths and advances our understanding of long-distance migration in nocturnal insect pests.


Subject(s)
Moths , Animals , Spodoptera/genetics , Moths/genetics , Transcriptome , Receptors, Cell Surface/genetics
11.
Insects ; 13(7)2022 Jun 26.
Article in English | MEDLINE | ID: mdl-35886757

ABSTRACT

Reproduction and flight are two major adaptive strategies to cope with environmental stress in migratory insects. However, research on density-mediated flight and reproduction in the global migratory agricultural pest Spodoptera frugiperda is lacking. In this study, flight and reproductive performances in response to larval crowding were investigated in S. frugiperda. We found that larval crowding significantly reduced the pupal and body weights of S. frugiperda. Adults reared under the highest density of 30 larvae/jar had the minimum wing expansion, which was significantly smaller than that of larvae reared under solitary conditions. Larval crowding also significantly increased the pre-oviposition period (POP) and period of first oviposition (PFO) but decreased the lifetime fecundity, flight duration and flight distance. Our results showed that S. frugiperda reared under solitary conditions exhibited higher pupal and body weights and stronger reproductive and flight capacities than those reared under high-density conditions. Larval crowding did not enhance the migration propensity in S. frugiperda adults. In conclusion, larval crowding may not be a major factor affecting FAW migration due to high levels of cannibalism. These findings provide new insights into the population dynamics of S. frugiperda under larval crowding conditions.

12.
Biotechnol Biofuels Bioprod ; 15(1): 78, 2022 Jul 12.
Article in English | MEDLINE | ID: mdl-35831866

ABSTRACT

BACKGROUND: Lignocellulose is an important raw material for biomass-to-energy conversion, and it exhibits a complex but inefficient degradation mechanism. Microbial degradation is promising due to its environmental adaptability and biochemical versatility, but the pathways used by microbes for lignin degradation have not been fully studied. Degradation intermediates and complex metabolic pathways require more study. RESULTS: A novel actinomycete DF3-3, with the potential for lignin degradation, was screened and isolated. After morphological and molecular identification, DF3-3 was determined to be Streptomyces thermocarboxydus. The degradation of alkali lignin reached 31% within 15 days. Manganese peroxidase and laccase demonstrated their greatest activity levels, 1821.66 UL-1 and 1265.58 UL-1, respectively, on the sixth day. The highest lignin peroxidase activity was 480.33 UL-1 on the fourth day. A total of 19 lignin degradation intermediates were identified by gas chromatography-mass spectrometry (GC-MS), including 9 aromatic compounds. Genome sequencing and annotation identified 107 lignin-degrading enzyme-coding genes containing three core enzymatic systems for lignin depolymerization: laccases, peroxidases and manganese peroxidase. In total, 7 lignin metabolic pathways were predicted. CONCLUSIONS: Streptomyces thermocarboxydus strain DF3-3 has good lignin degradation ability. Degradation products and genomics analyses of DF3-3 show that it has a relatively complete lignin degradation pathway, including the ß-ketoadipate pathway and peripheral reactions, gentisate pathway, anthranilate pathway, homogentisic pathway, and catabolic pathway for resorcinol. Two other pathways, the phenylacetate-CoA pathway and the 2,3-dihydroxyphenylpropionic acid pathway, are predicted based on genome data alone. This study provides the basis for future characterization of potential biotransformation enzyme systems for biomass energy conversion.

14.
J Econ Entomol ; 115(1): 124-132, 2022 02 09.
Article in English | MEDLINE | ID: mdl-34897490

ABSTRACT

The fall armyworm, Spodoptera frugiperda (Smith), is an invasive pest of cereal crops that now inhabits southern China year-round. Cultivation of crops unsuitable as host plants has been an effective pest management strategy for some insect pests, but the effects of green manure crops on S. frugiperda have not been investigated. An age-stage two-sex life table and tethered flight performance of S. frugiperda reared on different green manure species were obtained, and a population dynamics model established. Developmental durations of stages, survival rates, and fecundities of S. frugiperda differed significantly depending on host plant. Larvae fed Astragalus sinicus L. did not complete development. Although some larvae fed Vicia villosa Roth and Vicia sativa L. completed development, generation time was significantly prolonged, egg production was halved, and net reproductive rate decreased to 31% and 3% of those reared on corn, respectively. Survival rates of early-instars fed V. villosa and V. sativa were significantly lower than those fed corn. Population dynamics projections over 90 d showed the number of generations of S. frugiperda fed on V. villosa and V. sativa was reduced compared to those reared on corn. Flight performance of S. frugiperda reared on V. villosa decreased significantly compared to corn. Our results show that the three green manure species are unsuitable host plants for S. frugiperda. Therefore, reduction of corn production in southern China through rotation with these green manure crops may be a feasible method of ecological management of this major corn pest in China.


Subject(s)
Manure , Moths , Animals , Fertility , Larva , Pest Control , Spodoptera , Zea mays
15.
Insects ; 12(12)2021 Dec 02.
Article in English | MEDLINE | ID: mdl-34940171

ABSTRACT

Understanding how species that follow different life-history strategies respond to stressful temperature can be essential for efficient treatments of agricultural pests. Here, we focused on how the development, reproduction, flight, and reproductive consequences of migration of Cnaphalocrocis medinalis were influenced by exposure to different rearing temperatures in the immature stage. We found that the immature rice leaf roller that were reared at low temperatures (18 and 22 °C) developed more slowly than the normal temperature 26 °C, while those reared at high temperatures (34 °C) grew faster. Female adults from low immature stage rearing temperatures showed stronger reproductive ability than those at 26 and 34 °C, such as the preoviposition period (POP) significantly decreased, while the total lifetime fecundity obviously increased. However, 34 °C did not significantly reduce the reproductive performances of females compared to 26 °C. On the contrary, one relative decreased tendency of flight capacity was found in the lower immature temperature treatments. Furthermore, flight is a costly strategy for reproduction output to compete for limited internal resources. In the lower temperature treatments, after d1-tethered flight treatment, negative reproductive consequences were found that flight significantly decreased the lifetime fecundity and mating frequency of females from low rearing temperatures in the immature stage compared to the controls (no tethered-flight). However, in the 26 and 34 °C treatments, the same flight treatment induced a positive influence on reproduction, which significantly reduced the POP and period of first oviposition (PFO). The results suggest that the experience of relative high temperatures in the immature stage is more likely to trigger the onset of migration, but lower temperatures in the immature stage may induce adults to have a greater resident propensity with stronger reproductive ability.

16.
PLoS One ; 16(4): e0250209, 2021.
Article in English | MEDLINE | ID: mdl-33886610

ABSTRACT

The European sunflower moth, Homoesoma nebulellum (Denis et Schiffermüller), emerged as a major new pest in Bayannur, China, in 2006. Insecticidal control with a single application is problematic because timing is critical, and multiple applications increase production and environmental costs. Management of H. nebulellum by planting date adjustment can be effective, but the optimal time window for late planting is unknown. Natural levels of H. nebulellum infestation were compared among sunflowers planted on five dates from April 25 to June 5 in two years, and the relationship between timing of adult abundance and flowering assessed. Delaying planting of sunflower from the traditional planting period of April 25 -May 5 to May 15 -June 5 significantly decreased damage by H. nebulellum. Seed infestation rate was 30-40 times higher, and number of larvae/head 75-100 times higher in the earliest two plantings than in the latest two. Within two years of implementing delayed planting in Bayannur city, infestation area decreased from 72% in 2006 to 1.5% in 2008, and production losses decreased from 4.5 ton/ha in 2006 to 0.36 ton/ha in 2008, a 97% decrease compared to 2006. Moreover, the infestation area caused by H. nebulellum was continuously controlled below 5.3% of the planting area since 2008. We found the overlap between the first two days of flowering and peak adult presence was the key factor influencing level of damage caused by H. nebulellum. Because the number of eggs laid in the first two days of flowering accounted for 68% of the total, and sunflower seed infestation rate was positively correlated with the number of trapped adults weighted by proportion of daily oviposition. Oviposition of the majority of eggs in the first two days of flowering suggests an evolutionary mechanism whereby females choose host plants most conducive to larval development, consistent with the preference-performance hypothesis.


Subject(s)
Helianthus/growth & development , Horticulture , Insecticides , Moths , Animals , China
17.
Environ Entomol ; 50(3): 523-531, 2021 06 18.
Article in English | MEDLINE | ID: mdl-33693559

ABSTRACT

A facultative commitment to adult migration in the larval stage can be modified again after adult emergence in some Lepidoptera when influenced by an appropriate environmental cue during a sensitive stage. This phenomenon is termed secondary regulation of migration. The sensitive stage in adult beet webworm, Loxostege sticticalis L. (Lepidoptera: Pyralidae), was determined experimentally by starvation of presumed migrant females reared from gregarious-phase larvae (induced by crowding at 10 larvae per 650-ml jar). When presumed migrant adults were starved for 24 h on either of the first 2 d after emergence, the preoviposition period was shortened. In contrast, preoviposition periods were not significantly shortened for migrants starved on day 3 or when starvation lasted for more than 1 d after emergence. Because the preoviposition period corresponds to the migratory period in beet webworm, the results suggest that the first 2 d of adult life in the beet webworm is the sensitive stage during which presumed migrants can be switched to residents by an appropriate environmental cue. During the sensitive stage or not, starvation did not influence lifetime fecundity, oviposition period, longevity, or hatching rate of eggs laid by the starvation-stressed moths. Starvation on the first day also increased tethered flight performance and accelerated both flight muscle and ovarian development. The results suggest that a pulse of starvation in the sensitive period may inhibit the expected migration by accelerating and compressing the cycle of migratory flight muscle development and degeneration, while accelerating ovarian development, which is normally suppressed until after migration.


Subject(s)
Beta vulgaris , Moths , Animals , Female , Larva , Oviposition , Ovum
18.
Dev Comp Immunol ; 115: 103896, 2021 02.
Article in English | MEDLINE | ID: mdl-33075371

ABSTRACT

It has been reported that a high population density alters insect prophylactic immunity. Bursicon plays a key role in the prophylactic immunity of newly emerged adults. In this paper, full-length cDNAs encoding the alpha and beta subunits of bursicon in Mythimna separata larvae (Msburs α and Msburs ß) were identified. The cDNAs of Msburs α and Msburs ß contain open reading frames (ORFs) encoding 145- and 139-amino acid residue proteins, respectively. Multiple alignment sequences and phylogenetic analysis indicated that Msbursicons (Msburs α and Msburs ß) are orthologous to bursicons in other lepidopterans. The Msbursicons were expressed throughout all developmental states with higher relative expression during the egg, pupae, and adult stages. Msbursicons (Msburs α and Msburs ß) were highly expressed in the ventral nerve cord and brain relative to other tested tissues. Msbursicon expression of larvae subject to high-density treatment (10 larvae per jar) was significantly increased compared with that of the larvae subject to low-density treatment (1 larva per jar) in the whole fourth and fifth instar stages. The trend in the expression of the antimicrobial peptide (AMP) genes cecropin C and defensin in the test stage was accorded and delayed with increased expression of bursicons. Silencing Msburs α (or Msburs ß) expression by dsRNA injection in larvae subject to high-density treatment significantly decreased the expression levels of the cecropin C and defensin genes. Recombinant Msbursicon homodimers significantly induced the expression of the cecropin C and defensin genes. There was a notable decrease in the survival rate of the Msburs α (or Msburs ß or Mscecropin C or Msdefensin) knockdown larvae infected by Beauveria thuringiensis. Our findings provide the first insights into how larval density mediates AMP gene expression, which subsequently affects the prophylactic immunity of insects under high-density conditions.


Subject(s)
Antimicrobial Peptides/genetics , Insect Proteins/metabolism , Invertebrate Hormones/metabolism , Moths/immunology , Animals , Animals, Genetically Modified , Beauveria/immunology , Gene Expression Regulation , Gene Knockdown Techniques , Insect Proteins/genetics , Invertebrate Hormones/genetics , Larva/genetics , Larva/immunology , Larva/metabolism , Larva/microbiology , Moths/genetics , Moths/metabolism , Moths/microbiology
19.
Sci Rep ; 10(1): 11626, 2020 07 15.
Article in English | MEDLINE | ID: mdl-32669571

ABSTRACT

In migratory insects, increasing evidence has demonstrated juvenile hormone (JH) is involved in regulating adult reproduction and flight. Our previous study demonstrated that the switch from migrants to residents in Mythimna separata could be induced by adverse environmental conditions during a sensitive period in adulthood (the first day post-emergence), but the role of JH in this switch is not clear. Here, we found a significantly different pattern of JH titers between migrants and residents, with migrants showing a slower release of JH during adulthood than residents. Application of JH analogue (JHA) in the 1-day-old adults, significantly accelerated adult reproduction and suppressed flight capacity. The pre-oviposition period and period of first oviposition of migrants treated with JHA were significantly shorter, while the total lifetime fecundity and mating percentage increased. The flight capacity and dorso-longitudinal muscle size of the migrants were decreased significantly when treated with JHA. The effect of JHA on reproduction and flight capacity indicate that JH titers during the sensitive period (first day post-emergence) regulates the shift from migrants to residents in M. separata.


Subject(s)
Animal Migration , Flight, Animal , Juvenile Hormones/physiology , Moths/physiology , Muscles/physiology , Animals , Environment , Female , Fertility , Oviposition , Reproduction
20.
Dev Comp Immunol ; 113: 103802, 2020 12.
Article in English | MEDLINE | ID: mdl-32712170

ABSTRACT

Recent reports demonstrate that octopamine plays an important immunological role in crowded larvae of the Oriental Armyworm, Mythmina separata. We identified an octopamine receptor, the ß-adrenergic-like gene (designated MsOctß2R), with a 1191 bp open reading frame that encodes 396 amino acids and contains seven conserved hydrophobic transmembrane domains. Multiple sequence alignments and a phylogenetic analysis indicated that MsOctß2R was orthologous to Octß2R that is present in other lepidopterans. MsOctß2R was expressed throughout all developmental stages with higher relative expression during the fourth instar and adult stages. MsOctß2R was highly expressed in the ventral nerve cord and the fat body relative to other examined tissues. Elevated MsOctß2R expression was observed in larvae that were under higher-density conditions (7 and 10 larvae per jar). Silencing MsOctß2R expression via dsRNA injections in larvae from higher-density conditions significantly decreased phenoloxidase (PO) and lysozyme activity, total haemocyte counts, and survival rates against Beauveria bassiana infections (54.06%, 9.91%, 36.22%, and 23.53%, respectively) when compared with control larvae. These results suggest that high-density conditions might alter prophylactic immunity in larvae by regulating the MsOctß2R gene in M. separara and provide new insights into density-dependent prophylaxis in insects.


Subject(s)
Beauveria/physiology , Insect Proteins/genetics , Lepidoptera/genetics , Mycoses/immunology , Receptors, Biogenic Amine/genetics , Animals , Cloning, Molecular , Disease Resistance , Drosophila Proteins/genetics , Gene Expression Regulation , Gene Silencing , Immunity , Larva , Lepidoptera/immunology , Monophenol Monooxygenase/genetics , Monophenol Monooxygenase/metabolism , Pest Control, Biological , Phylogeny , Receptors, Adrenergic, beta/genetics , Receptors, Adrenergic, beta/metabolism , Receptors, G-Protein-Coupled/genetics , Sequence Alignment
SELECTION OF CITATIONS
SEARCH DETAIL
...