Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1755, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36720991

ABSTRACT

Electrical modulation of magnetic states in single-phase multiferroic materials, using domain-wall magnetoelectric (ME) coupling, can be enhanced substantially by controlling the population density of the ferroelectric (FE) domain walls during polarization switching. In this work, we investigate the domain-wall ME coupling in multiferroic h-YbFeO3 thin films, in which the FE domain walls induce clamped antiferromagnetic (AFM) domain walls with reduced magnetization magnitude. Simulation according to the phenomenological theory indicates that the domain-wall ME effect is dramatically enhanced when the separation between the FE domain walls shrinks below the characteristic width of the clamped AFM domain walls during the ferroelectric switching. Experimentally, we show that while the magnetization magnitude remains same for both the positive and the negative saturation polarization states, there is evidence of magnetization reduction at the coercive voltages. These results suggest that the domain-wall ME effect is viable for electrical control of magnetization.

2.
J Phys Condens Matter ; 34(29)2022 May 19.
Article in English | MEDLINE | ID: mdl-35508146

ABSTRACT

Compact domain features have been observed in spin crossover [Fe{H2B(pz)2}2(bipy)] molecular thin film systems via soft x-ray absorption spectroscopy and photoemission electron microscopy. The domains are in a mixed spin state that on average corresponds to roughly 2/3 the high spin occupation of the pure high spin state. Monte Carlo simulations support the presence of intermolecular interactions that can be described in terms of an Ising model in which interactions beyond nearest-neighbors cannot be neglected. This suggests the presence of short-range order to permit interactions between molecules beyond nearest neighbor that contribute to the formation of largely high spin state domains structure. The formation of a spin state domain structure appears to be the result of extensive cooperative effects.

3.
J Am Chem Soc ; 143(36): 14563-14572, 2021 Sep 15.
Article in English | MEDLINE | ID: mdl-34472348

ABSTRACT

A mononuclear complex [Fe(tBu2qsal)2] has been obtained by a reaction between an Fe(II) precursor salt and a tridentate ligand 2,4-di(tert-butyl)-6-((quinoline-8-ylimino)methyl)phenol (tBu2qsalH) in the presence of triethylamine. The complex exhibits a hysteretic spin transition at 117 K upon cooling and 129 K upon warming, as well as light-induced excited spin-state trapping at lower temperatures. Although the strongly cooperative spin transition suggests substantial intermolecular interactions, the complex is readily sublimable, as evidenced by the growth of its single crystals by sublimation at 573 → 373 K and ∼10-3 mbar. This seemingly antagonistic behavior is explained by the asymmetric coordination environment, in which the tBu substituents and quinoline moieties appear on opposite sides of the complex. As a result, the structure is partitioned in well-defined layers separated by van der Waals interactions between the tBu groups, while the efficient cooperative interactions within the layer are provided by the quinoline-based moieties. The abrupt spin transition is preserved in a 20 nm thin film prepared by sublimation, as evidenced by abrupt and hysteretic changes in the dielectric properties in the temperature range comparable to the one around which the spin transition is observed for the bulk material. The changes in the dielectric response are in excellent agreement with differences in the dielectric tensor of the low-spin and high-spin crystal structures evaluated by density functional theory calculations. The substantially higher volatility of [Fe(tBu2qsal)2], as compared to a similar complex without tBu substituents, suggests that asymmetric molecular shapes offer an efficient design strategy to achieve sublimable complexes with strongly cooperative spin transitions.

4.
J Phys Condens Matter ; 31(31): 315401, 2019 Aug 07.
Article in English | MEDLINE | ID: mdl-30995634

ABSTRACT

The spin crossover (SCO) transitions at both the surface and over the entire volume of the [Fe{H2B(pz)2}2(bipy)] polycrystalline films on Al2O3 substrates have been studied, where pz = pyrazol-1-yl and bipy = 2,2'-bipyridine. For [Fe{H2B(pz)2}2(bipy)] films of hundreds of nm thick, magnetometry and x-ray absorption spectroscopy measurements show thermal hysteresis in the SCO transition with temperature, although the transition in bulk [Fe{H2B(pz)2}2(bipy)] occurs in a non-hysteretic fashion at 157 K. While the size of the crystallites in those films are similar, the hysteresis becomes more prominent in thinner films, indicating a significant effect of the [Fe{H2B(pz)2}2(bipy)]/Al2O3 interface. Bistability of spin states, which can be inferred from the thermal hysteresis, was directly observed using temperature-dependent x-ray diffraction; the crystallites behave as spin-state domains that coexist during the transition. The difference between the spin state of molecules at the surface of the [Fe{H2B(pz)2}2(bipy)] films and that of the molecules within the films, during the thermal cycle, indicates that both cooperative (intermolecular) effects and coordination are implicated in perturbations to the SCO transition.

5.
Chem Commun (Camb) ; 54(8): 944-947, 2018 Jan 23.
Article in English | MEDLINE | ID: mdl-29319081

ABSTRACT

Room temperature isothermal reversible spin crossover switching of [Fe(H2B(pz)2)2(bipy)] thin films is demonstrated. The magnetic oxide substrate locks the [Fe{H2B(pz)2}2(bipy)] largely in a low spin state. With an X-ray fluence, excitation to a high spin state occurs, while relaxation back to low spin state is aided by alternating the substrate magnetization.

6.
Adv Mater ; 29(39)2017 Oct.
Article in English | MEDLINE | ID: mdl-28846811

ABSTRACT

The Fe(II) spin crossover complex [Fe{H2 B(pz)2 }2 (bipy)] (pz = pyrazol-1-yl, bipy = 2,2'-bipyridine) can be locked in a largely low-spin-state configuration over a temperature range that includes temperatures well above the thermal spin crossover temperature of 160 K. This locking of the spin state is achieved for nanometer thin films of this complex in two distinct ways: through substrate interactions with dielectric substrates such as SiO2 and Al2 O3 , or in powder samples by mixing with the strongly dipolar zwitterionic p-benzoquinonemonoimine C6 H2 (-⋯ NH2 )2 (-⋯ O)2 . Remarkably, it is found in both cases that incident X-ray fluences then restore the [Fe{H2 B(pz)2 }2 (bipy)] moiety to an electronic state characteristic of the high spin state at temperatures of 200 K to above room temperature; that is, well above the spin crossover transition temperature for the pristine powder, and well above the temperatures characteristic of light- or X-ray-induced excited-spin-state trapping. Heating slightly above room temperature allows the initial locked state to be restored. These findings, supported by theory, show how the spin crossover transition can be manipulated reversibly around room temperature by appropriate design of the electrostatic and chemical environment.

7.
J Phys Condens Matter ; 28(15): 156001, 2016 Apr 20.
Article in English | MEDLINE | ID: mdl-26982512

ABSTRACT

The electronic structure for the conduction bands of both hexagonal and orthorhombic LuFeO3 thin films have been measured using x-ray absorption spectroscopy at oxygen K (O K) edge. Dramatic differences in both the spectral features and the linear dichroism are observed. These differences in the spectra can be explained using the differences in crystal field splitting of the metal (Fe and Lu) electronic states and the differences in O 2p-Fe 3d and O 2p-Lu 5d hybridizations. While the oxidation states have not changed, the spectra are sensitive to the changes in the local environments of the Fe(3+) and Lu(3+) sites in the hexagonal and orthorhombic structures. Using the crystal-field splitting and the hybridizations that are extracted from the measured electronic structures and the structural distortion information, we derived the occupancies of the spin minority states in Fe(3+), which are non-zero and uneven. The single ion anisotropy on Fe(3+) sites is found to originate from these uneven occupancies of the spin minority states via spin-orbit coupling in LuFeO3.

8.
J Phys Condens Matter ; 27(17): 175004, 2015 May 08.
Article in English | MEDLINE | ID: mdl-25791898

ABSTRACT

The surface termination and the nominal valence states for hexagonal LuFeO3 thin films grown on Al2O3(0 0 0 1) substrates were characterized by angle resolved x-ray photoemission spectroscopy. The Lu 4f, Fe 2p and O 1s core level spectra indicate that both the surface termination and the nominal valence depend on surface preparation, but the stable surface terminates in a Fe-O layer. This is consistent with the results of density functional calculations which predict that the Fe-O termination of LuFeO3(0 0 0 1) surface is energetically favorable and stable over a broad range of temperatures and oxygen partial pressures when it is reconstructed to eliminate surface polarity.

SELECTION OF CITATIONS
SEARCH DETAIL
...