Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
World J Gastrointest Oncol ; 16(6): 2318-2334, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38994153

ABSTRACT

Emerging therapeutic methods represented by targeted therapy are effective supplements to traditional first-line chemoradiotherapy resistance. Human epidermal growth factor receptor 2 (HER2) is one of the most important targets in targeted therapy for gastric cancer. Trastuzumab combined with chemotherapy has been used as the first-line treatment for advanced gastric cancer. The safety and efficacy of pertuzumab and margetuximab in the treatment of gastric cancer have been verified. However, monoclonal antibodies, due to their large molecular weight, inability to penetrate the blood-brain barrier, and drug resistance, lead to decreased therapeutic efficacy, so it is necessary to explore the efficacy of other HER2-targeting therapies in gastric cancer. Small-molecule tyrosine kinase inhibitors, such as lapatinib and pyrrotinib, have the advantages of small molecular weight, penetrating the blood-brain barrier and high oral bioavailability, and are expected to become the drugs of choice for perioperative treatment and neoadjuvant therapy of gastric cancer after validation by large-scale clinical trials in the future. Antibo-drug conjugate, such as T-DM1 and T-DXd, can overcome the resistance of monoclonal antibodies despite their different mechanisms of tumor killing, and are a supplement for the treatment of patients who have failed the treatment of monoclonal antibodies such as trastuzumab. Therefore, after more detailed stratification of gastric cancer patients, various gastric cancer drugs targeting HER2 are expected to play a more significant role.

2.
Dig Dis Sci ; 67(2): 492-503, 2022 02.
Article in English | MEDLINE | ID: mdl-33630215

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) can act as promoters or inhibitors in cancer progression. Has_circ_0006948 (circ_0006948) was reported to aggravate the malignant behaviors of esophageal carcinoma (EC). AIMS: This study focused on investigating the molecular mechanism of circ_0006948 in EC progression. METHODS: The quantitative real-time polymerase chain reaction was performed to detect the expression of circ_0006948, microRNA-4262 (miR-4262) and fibronectin type III domain containing 3B (FNDC3B). Cell growth analysis was conducted by Cell Counting Kit-8 and colony formation assays. Cell migration and invasion were assessed by transwell assay. Epithelial-mesenchymal transition (EMT)-associated proteins and FNDC3B protein expression were assayed using western blot. Dual-luciferase reporter and RNA pull-down assays were performed to validate the target combination. Xenograft tumor assay was used for investigating the role of circ_0006948 in vivo. RESULTS: Circ_0006948 was upregulated in EC tissues and cells. Downregulating the expression of circ_0006948 or FNDC3B repressed cell growth, migration, invasion and EMT in EC cells. Target analysis indicated that miR-4262 was a target for circ_0006948 and FNDC3B was a downstream gene for miR-4262. Moreover, circ_0006948 could affect the expression of FNDC3B via sponging miR-4262. The effects of si-circ_0006948#1 on EC cells were partly restored by miR-4262 inhibition or FNDC3B overexpression. In addition, circ_0006948 also facilitated EC tumorigenesis in vivo by targeting the miR-4262/FNDC3B axis. CONCLUSION: Taken together, circ_0006948 functioned as an oncogenic factor in EC by the miR-4262-mediated FNDC3B expression regulation.


Subject(s)
Adenocarcinoma/genetics , Esophageal Neoplasms/genetics , Esophageal Squamous Cell Carcinoma/genetics , Adenocarcinoma/pathology , Animals , Cell Line, Tumor , Cell Movement/genetics , Cell Proliferation/genetics , Cell Survival , Epithelial-Mesenchymal Transition/genetics , Esophageal Neoplasms/pathology , Esophageal Squamous Cell Carcinoma/pathology , Fibronectins/genetics , Humans , Mice , Mice, Nude , MicroRNAs/genetics , Neoplasm Invasiveness , Neoplasm Transplantation , RNA, Circular/genetics , Tumor Stem Cell Assay
3.
Oncol Lett ; 12(5): 3250-3258, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27899990

ABSTRACT

Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide and remains the third leading cause of cancer-associated mortality. The present study aimed to fully elucidate the pathogenesis of CRC and identify associated genes in tumor development. Microarray GSE44076, GSE41328 and GSE44861 datasets were downloaded from the Gene Expression Omnibus database and integrated with meta-analysis. Differentially-expressed genes (DEGs) were identified from CRC samples compared with adjacent non-cancerous controls using the Limma package in R, followed by functional analysis using the Database for Annotation, Visualization, and Integrated Discovery online tool. A protein-protein interaction (PPI) network of DEGs and linker genes was constructed using NetBox software and modules were also mined. Functional annotation was performed for modules with a maximum number of nodes. Subsequent to meta-analysis to pool the data, one dataset that included 327 samples involved in 11,081 genes was obtained. A total of 697 DEGs were identified between CRC samples and adjacent non-cancerous controls. In the PPI network, modules 1 and 5 contained the maximum number of nodes. Collagen, type I, α1 (COL1A1), COL1A2 and matrix metallopeptidase 9 (MMP9) in module 1 and UDP-glucose 6-dehydrogenase (UGDH), aldehyde dehydrogenase 1 family, member A1 (ALDH1A1), fatty acid binding protein 4 (FABP4) and monoglyceride lipase (MGLL) in module 5 exhibited a high degree of connectivity. Functional analysis indicated that the genes in module 1 were involved in extracellular matrix (ECM)-associated functions and that the genes in module 5 were involved in metabolism-related functions. Overall, significant DEGs and linker genes, namely COL1A1, COL1A2, MMP9, UGDH, ALDH1A1, FABP4 and MGLL, play a crucial role in the development of CRC via regulating the ECM and cell metabolism.

SELECTION OF CITATIONS
SEARCH DETAIL
...