Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(21): 15417-15425, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38747307

ABSTRACT

An excitonic insulator (EI) is an intriguing correlated electronic phase of condensed excitons. Ta2NiSe5 is a model material for investigating condensed excitonic states. Herein, femtosecond pump-probe spectroscopy is used to study the coherent phonon dynamics and associated exciton-phonon coupling in single-crystal Ta2NiSe5. The reflectivity time series consists of exponential decay due to hot carriers and damped oscillations due to the Ag phonon vibration. Given the in-plane anisotropic thermal conductivity of Ta2NiSe5, coherent phonon oscillations are stronger with perpendicular polarization to its quasi-one-dimensional chains. The 1-, 2-, and 4-THz vibration modes show coherent amplitude responses in the EI phase of Ta2NiSe5 with increasing temperature, totally different from those of normal coherent phonons (the 3- and 3.7-THz modes). The amplitude modes at higher frequencies decouple with the EI order parameter at lower temperatures, as supported by theoretical analysis with a model Hamiltonian of the exciton-phonon coupling system. Our work provides valuable insights into the character of the EI order parameter and its coupling to multiple coherent amplitude modes.

2.
Phys Chem Chem Phys ; 25(42): 28941-28947, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37855655

ABSTRACT

Lattice dynamics plays a significant role in manipulating the unique physical properties of materials. In this work, femtosecond transient optical spectroscopy is used to investigate the generation mechanism and relaxation dynamics of coherent phonons in Fe1.14Te-a parent compound of chalcogenide superconductors. The reflectivity time series consist of the exponential decay component due to hot carriers and damped oscillations caused by the A1g phonon vibration. The vibrational frequency and dephasing time of the A1g phonons are obtained as a function of temperature. With increasing temperature, the phonon frequency decreases and can be well described with the anharmonicity model. Dephasing time is independent of temperature, indicating that the phonon dephasing is dominated by phonon-defect scattering. The impulsive stimulated Raman scattering mechanism is responsible for the coherent phonon generation. Owing to the resonance Raman effect, the maximum photosusceptibility of the A1g phonons occurs at 1.590 eV, corresponding to an electronic transition in Fe1.14Te.

SELECTION OF CITATIONS
SEARCH DETAIL
...