Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
1.
Quant Imaging Med Surg ; 13(4): 2119-2127, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37064359

ABSTRACT

Background: For bone health assessment, dual-energy X-ray absorptiometry (DEXA) is recommended to measure bone mineral content and areal bone mineral density (aBMD) in the lumbar spine. However, intermachine differences were not taken into account when developing these recommendations. According to the International Society of Clinical Densitometry (ISCD), phantom-based cross-calibration is adequate after replacing the DEXA system from a different manufacturer. For different DEXA equipment, individual calibration equations were found to be necessary to fit the observed values with the given densities. Methods: The BMD European Spine Phantom (ESP) measurements (L1, L2, and L3) were assessed on 3 machines. We used the Welch test in the one-way analysis of variance (ANOVA) with a post-hoc Tamhane T2 test, linear regressions, and Bland-Altman analysis to assess the consistency of measurements and establish cross-calibration equations. Results: The coefficients of variation (CV)% of the phantom BMD values measured using the 3 systems were less than 3.0%. The 3 DEXA systems were highly correlated with BMD in the lumbar spine, with correlation values ranging from 0.933 to 0.984 (P<0.0001). The cross-calibration regression models of the ESP measurements yielded the highest prediction accuracies with the lowest prediction errors (the standard error of the estimate ranged from 0.004 to 0.008 g/cm2; P<0.0001). After the regression equations were applied, the differences in BMD values among the 3 systems were negligible. In addition, the Bland-Altman plot showed that almost all data points were within the 95% limits of agreement. Conclusions: A strong agreement for BMD measurement was established between the 3 DEXA systems. Cross-calibration equations for the lumbar spine BMD values need to be applied to transform the Hologic Discovery A or GE Lunar iDXA measurements into SONIALVISION SMIT measurements to comply with the ISCD standards for patient continuity of care in assessment during clinical diagnosis.

3.
Front Endocrinol (Lausanne) ; 13: 884306, 2022.
Article in English | MEDLINE | ID: mdl-36034436

ABSTRACT

Background and purpose: To investigate the image quality and accurate bone mineral density (BMD) on quantitative CT (QCT) for osteoporosis screening by deep-learning image reconstruction (DLIR) based on a multi-phantom and patient study. Materials and methods: High-contrast spatial resolution, low-contrast detectability, modulation function test (MTF), noise power spectrum (NPS), and image noise were evaluated for physical image quality on Caphan 500 phantom. Three calcium hydroxyapatite (HA) inserts were used for accurate BMD measurement on European Spine Phantom (ESP). CT images were reconstructed with filtered back projection (FBP), adaptive statistical iterative reconstruction-veo 50% (ASiR-V50%), and three levels of DLIR(L/M/H). Subjective evaluation of the image high-contrast spatial resolution and low-contrast detectability were compared visually by qualified radiologists, whilst the statistical difference in the objective evaluation of the image high-contrast spatial resolution and low-contrast detectability, image noise, and relative measurement error were compared using one-way analysis of variance (ANOVA). Cohen's kappa coefficient (k) was performed to determine the interobserver agreement in qualitative evaluation between two radiologists. Results: Overall, for three levels of DLIR, 50% MTF was about 4.50 (lp/cm), better than FBP (4.12 lp/cm) and ASiR-V50% (4.00 lp/cm); the 2 mm low-contrast object was clearly resolved at a 0.5% contrast level, while 3mm at FBP and ASiR-V50%. As the strength level decreased and radiation dose increased, DLIR at three levels showed a higher NPS peak frequency and lower noise level, leading to leftward and rightward shifts, respectively. Measured L1, L2, and L3 were slightly lower than that of nominal HA inserts (44.8, 95.9, 194.9 versus 50.2, 100.6, 199.2mg/cm3) with a relative measurement error of 9.84%, 4.08%, and 2.60%. Coefficients of variance for the L1, L2, and L3 HA inserts were 1.51%, 1.41%, and 1.18%. DLIR-M and DLIR-H scored significantly better than ASiR-V50% in image noise (4.83 ± 0.34, 4.50 ± 0.50 versus 4.17 ± 0.37), image contrast (4.67 ± 0.73, 4.50 ± 0.70 versus 3.80 ± 0.99), small structure visibility (4.83 ± 0.70, 4.17 ± 0.73 versus 3.83 ± 1.05), image sharpness (3.83 ± 1.12, 3.53 ± 0.90 versus 3.27 ± 1.16), and artifacts (3.83 ± 0.90, 3.42 ± 0.37 versus 3.10 ± 0.83). The CT value, image noise, contrast noise ratio, and image artifacts in DLIR-M and DLIR-H outperformed ASiR-V50% and FBP (P<0.001), whilst it showed no statistically significant between DLIR-L and ASiR-V50% (P>0.05). The prevalence of osteoporosis was 74 (24.67%) in women and 49 (11.79%) in men, whilst the osteoporotic vertebral fracture rate was 26 (8.67%) in women and (5.29%) in men. Conclusion: Image quality with DLIR was high-qualified without affecting the accuracy of BMD measurement. It has a potential clinical utility in osteoporosis screening.


Subject(s)
Deep Learning , Osteoporosis , Bone Density , Female , Humans , Image Processing, Computer-Assisted , Male , Radiation Dosage , Radiographic Image Interpretation, Computer-Assisted , Tomography, X-Ray Computed
4.
Front Endocrinol (Lausanne) ; 13: 870552, 2022.
Article in English | MEDLINE | ID: mdl-35813654

ABSTRACT

Purpose: Determine the association between cross-sectional visceral adipose tissue (VAT) area of different anatomic locations and total abdominopelvic VAT volume; identify the optimal measurement site in a single-slice to quantify the total VAT volume. Method: Participants who underwent non-contrast abdominal scan by quantitative CT (QCT) were enrolled from May 2021 to October 2021. The VAT area (cm2) at different anatomic sites as upper-pole, lower-pole, and hilum of the kidney, intervertebral disc of L2/L3 and L5/S1, and umbilical level were measured on QCT PRO BMD workstation (Mindways QCT PRO workstation). The total VAT volume (cm3) from the upper pole of kidney to the L5/S1 intervertebral disc of the pelvis (abdominopelvic region) was obtained by using Siemens Healthineers Syngo via Frontier cardiac risk assessment. Regression models were used to identify the optimal single-slice in different gender for estimating VAT volume. Statistical significance was established at P < 0.05. Results: Total of 311 Chinese participants including 179 men [age, 55.1 ± 14.9 years; body mass index (BMI), 24.2 ± 3.2 kg/m2; total VAT volume, 2482.6 ± 1276.5 mL] and 132 women [age, 54.3 ± 14.9; BMI, 23.5 ± 2.9; total VAT volume, 1761.5 ± 876.4]. Pearson's correlation analysis revealed a strong association between the VAT area and total abdominopelvic VAT volume at the hilum of the kidney in both men (r=0.938, P<0.001) and women (r=0.916, P<0.001). Adjust for covariates including age, BMI, and waist circumference make a relatively small effect on predicting the total VAT volume. Conclusions: Measurement of cross-sectional areas at the hilum of the kidney in both genders showed a strongest relation to TVAT volume. Our results may provide an identifiable and valuable axial landmark for measuring visceral adipose tissue in clinical practice.


Subject(s)
Adipose Tissue , Intra-Abdominal Fat , Adult , Aged , Body Mass Index , Female , Humans , Intra-Abdominal Fat/diagnostic imaging , Male , Middle Aged , Tomography, X-Ray Computed , Waist Circumference
5.
Quant Imaging Med Surg ; 12(1): 766-780, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34993117

ABSTRACT

BACKGROUND: To systematically evaluate the physical image quality of low-dose computed tomography (LDCT) on CT scanners from 5 different manufacturers using a phantom model. METHODS: CT images derived from a Catphan 500 phantom were acquired using manufacturer-specific iterative reconstruction (IR) algorithms and deep learning image reconstruction (DLIR) on CT scanners from 5 different manufacturers and compared using filtered back projection with 2 radiation doses of 0.25 and 0.75 mGy. Image high-contrast spatial resolution and image noise were objectively characterized by modulation transfer function (MTF) and noise power spectrum (NPS). Image high-contrast spatial resolution and image low-contrast detectability were compared directly by visual evaluation. CT number linearity and image uniformity were compared with intergroup differences using one-way analysis of variance (ANOVA). RESULTS: The CT number linearity of 4 insert materials were as follows: acrylic (95% CI: 120.35 to 121.27; P=0.134), low-density polyethylene (95% CI: -98.43 to -97.43; P=0.070), air (95% CI: -996.16 to -994.51; P=0.018), and Teflon (95% CI: 984.40 to 986.87; P=0.883). The image uniformity values of GE Healthcare (95% CI: 3.24 to 3.83; P=0.138), Philips (95% CI: 2.62 to 3.70; P=0.299), Siemens (95% CI: 2.10 to 3.59; P=0.054), Minfound (95% CI: 2.35 to 3.65; P=0.589), and Neusoft (95% CI: 2.63 to 3.37; P=0.900) were evaluated and found to be within ±4 Hounsfield units (HU), with a range of 0.99-2.76 HU for standard deviations. There was no statistically significant difference in CT number linearity and image uniformity across the 5 CT scanners under different radiation doses with IR and DLIR algorithms (P>0.05). The resolution level at 10% MTF was 6.98 line-pairs-per-centimeter (lp/cm) on average, which was similar to the subjective evaluation results (mostly up to 7 lp/cm). DLIR at all 3 levels had the highest 50% MTF values among all reconstruction algorithms. For image low-contrast detectability, the minimum diameter of distinguishable contrast holes reached 4 mm at a 0.5% resolution. Increasing the radiation dose and IR strength reduced the image noise and NPS curve peak frequency while improving image low-contrast detectability. CONCLUSIONS: This study demonstrated that the image quality of CT scanners from 5 different manufacturers in LDCT is comparable and that the CT number linearity is unbiased and can contribute to accurate bone mineral density quantification.

6.
Sci Rep ; 11(1): 11076, 2021 05 26.
Article in English | MEDLINE | ID: mdl-34040142

ABSTRACT

Obesity, especially abdominal obesity, is correlated to increased risk of cardiovascular morbidity and mortality. It is urgent to search a simply method to predict visceral fat area (VFA). Herein, we evaluated the correlation of waist circumference (WC) measured by anthropometry and bioelectrical impedance analysis (BIA), and VFA estimated by BIA or measured by quantitative computed tomography (QCT) in China. The mean body mass index (BMI) was 25.09 ± 3.31 kg/m2 and the mean age was 49.16 ± 9.19 years in 2754 subjects. VFA-BIA were significantly smaller than VFA-QCT in both BMI and age subgroups between male and female (p < 0.001). High correlation was observed for WC between BIA and manually (r = 0.874 for all, r = 0.865 for male and r = 0.806 for female) and for VFA between BIA and QCT (r = 0.512 for all). The intraclass correlation coefficient (ICC) showed the perfect agreement between BIA and manually to measure WC (ICC = 0.832 for all, 0.845 for male and 0.697 for female) and implied a good reliability for VFA between BIA and QCT with women among subgroups (ICC = 0.623 for all, ICC = 0.634 for age < 50 years and ICC = 0.432 for BMI > 24 kg/m2), whereas the good reliability was lost in men (ICC = 0.174). The kappa analysis showed a moderate consistency for VFA measured by BIA and QCT (Kappa = 0.522 with age < 50 years, 0.565 with age ≥ 50 years in male; Kappa = 0.472 with age < 50 years, 0.486 with age ≥ 50 years in female). In addition, BIA to estimate VFA (r = 0.758 in male, r = 0.727 in female, P < 0.001) has a stronger correlation with VFA measured by QCT than BMI and WC according to gender categories. Furthermore, ROC analysis showed the cut-off point of VFA measured by BIA for predicting visceral obesity was: 101.90 cm2, 119.96 cm2 and 118.83 cm2 and the Youden's index was 0.577, 0.577 and 0.651, respectively and the Kappa value was 0.532, 0.536 and 0.611 in unadjusted model, model 1 and model 2. In conclusion, being non-invasive and free of radiation, BIA can be used as a safe and convenient tool to estimate VFA in female; especially for monitoring the VFA of the same person, the BIA has superiority to a certain extent. However, the consistency is not most ideal between BIA and QCT. When using BIA to assess whether a person is visceral obesity, we must take into consideration age, BMI and WC. Therefore, we established a regression formula to reflect VFA-QCT by VFA-BIA, age, BMI, and WC. In addition, a more accurate formula is needed to match the CT data in China.


Subject(s)
Anthropometry/methods , Body Composition/physiology , Electric Impedance , Tomography, X-Ray Computed/methods , Waist Circumference/physiology , Adult , Aged , Aged, 80 and over , Body Mass Index , China , Female , Humans , Male , Middle Aged , Young Adult
7.
Med Phys ; 45(12): 5472-5481, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30317652

ABSTRACT

OBJECTIVES: To develop and test a new multifeature-based computer-aided diagnosis (CADx) scheme of lung cancer by fusing quantitative imaging (QI) features and serum biomarkers to improve CADx performance in classifying between malignant and benign pulmonary nodules. METHODS: First, a dataset involving 173 patients was retrospectively assembled, which includes computed tomography (CT) images and five serum biomarkers extracted from blood samples. Second, a CADx scheme using a four-step-based semiautomatic segmentation method was applied to segment the targeted lung nodules, and compute 78 QI features from each segmented nodule from CT images. Third, two support vector machine (SVM) classifiers were built using QI features and serum biomarkers, respectively. SVM classifiers were trained and tested using the overall dataset with a Relief feature selection method, a synthetic minority oversampling technique and a leave-one-case-out validation method. Finally, to further improve CADx performance, an information-fusion method was used to combine the prediction scores generated by two SVM classifiers. RESULTS: Areas under receiver operating characteristic curves (AUC) generated by QI feature and serum biomarker-based SVMs were 0.81 ± 0.03 and 0.69 ± 0.05, respectively. Using an optimal weighted fusion method to combine prediction scores generated by two SVMs, AUC value significantly increased to 0.85 ± 0.03 (P < 0.05). CONCLUSIONS: This study demonstrates (a) higher CADx performance by using QI features than using the serum biomarkers and (b) feasibility of further improving CADx performance by fusion of QI features and serum biomarkers, which indicates that QI features and serum biomarkers contain the complementary classification information.


Subject(s)
Biomarkers, Tumor/blood , Diagnosis, Computer-Assisted/methods , Image Processing, Computer-Assisted , Lung Neoplasms/blood , Lung Neoplasms/diagnostic imaging , Tomography, X-Ray Computed , Adult , Aged , Area Under Curve , Female , Humans , Male , Middle Aged , Retrospective Studies
8.
Quant Imaging Med Surg ; 8(1): 32-38, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29541621

ABSTRACT

BACKGROUND: To investigate the repeatability and accuracy of quantitative CT (QCT) measurement of bone mineral density (BMD) by low-mAs using iterative model reconstruction (IMR) technique based on phantom model. METHODS: European spine phantom (ESP) was selected and measured on the Philips Brilliance iCT Elite FHD machine for 10 times. Data were transmitted to the QCT PRO workstation to measure BMD (mg/cm3) of the ESP (L1, L2, L3). Scanning method: the voltage of X-ray tube is 120 kV, the electric current of X-ray tube output in five respective groups A-E were: 20, 30, 40, 50 and 60 mAs. Reconstruction: all data were reconstructed using filtered back projection (FBP), IR levels of hybrid iterative reconstruction (iDose4, levels 1, 2, 3, 4, 5, 6 were used) and IMR (levels 1, 2, 3 were used). ROIs were placed in the middle of L1, L2 and L3 spine phantom in each group. CT values, noise and contrast-to-noise ratio (CNR) were measured and calculated. One-way analysis of variance (ANOVA) was used to compare BMD values of different mAs and different IMR. RESULTS: Radiation dose [volume CT dose index (CTDIvol) and dose length product (DLP)] was positively correlated with tube current. In L1 with low BMD, different mAs in FBP showed P<0.05, indicating statistically significant BMD in ESP. In other iterative algorithms, different mAs under same iterative algorithms showed P>0.05, indicating no difference in BMD. And P>0.05 was observed among BMD of spine phantom in L1, L2 and L3 under same mAs joined with varied iterative reconstruction. The BMD in L1 varied greatly during FBP reconstruction, and less variation was observed in reconstruction of IMR [1] and IMR [2]. The BMD of L2 changed more during FBP reconstruction, where less was observed in IMR [2]. The BMD of L3 varied greatly during FBP reconstruction, and was less varied in all levels of iDose4 and reconstruction of IMR [2]. In addition, along with continuous mAs incensement, the CNRs in various algorithms continued to increase. Among them, CNR with the FBP algorithm is the lowest, and CNR of the IMR [3] algorithm is the highest. CONCLUSIONS: Repeated measurements of BMD with QCT in the ESP multicenter showed that BMD changes in L1-L3 are the least varied at IMR [2] algorithm. It is recommended to scan at 120 kV with 20 mAs combined with IMR [2] algorithm. In this way, the BMD of spine by QCT could be accurately measured, while radiation dosage significantly reduced and imaging quality improved at the same time.

9.
Acad Radiol ; 25(4): 494-501, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29249576

ABSTRACT

RATIONALE AND OBJECTIVES: This study aimed to investigate the feasibility of reducing radiation exposure and contrast medium (CM) dose in follow-up computed tomography angiography (CTA) after thoracic endovascular aortic repair (TEVAR) using low tube voltage and knowledge-based iterative model reconstruction (IMR). MATERIALS AND METHODS: Thirty-six patients that required follow-up CTA after TEVAR were included in this intra-individual study. The conventional protocol with standard tube voltage of 120 kVp and CM volume of 70 mL was applied in the first follow-up CTA of all the patients (control group A). The ultra-low CM dose protocol with low tube voltage of 80 kVp and weight-adapted CM volume of 0.4 mL/kg was utilized in the second follow-up CTA (study group B). Set A.FBP (group A filtered back-projection) contained images for group A that were reconstructed through FBP method. Three sets (B.FBP, B.HIR, and B.IMR) for group B were reconstructed using three methods, FBP, hybrid iterative reconstruction (HIR), and IMR, respectively. Objective measurements including aortic attenuations, image noise, contrast-to-noise ratios (CNRs), and figure of merit of CNR (FOMCNR), and subjective rating scores of the four image sets were compared. RESULTS: Compared to the images in set A.FBP, the images in set B.IMR had better quality in terms of equivalent attenuation values, equivalent subjective scores, lower noise, higher or equivalent CNRs, and higher FOMCNR. The quality of images in sets B.FBP and B.HIR was unacceptable. The radiation exposure and CM dose in group B were 1.94 mGy and 28 ± 5 mL, respectively, representing reductions of 77.6% (P < .001) and 60% (P < .001) as compared to those in group A. CONCLUSIONS: In follow-up examinations after TEVAR, CTA with ultra-low radiation exposure and CM dose is feasible using low tube voltage and IMR for nonobese patients.


Subject(s)
Aorta, Thoracic/diagnostic imaging , Aorta, Thoracic/surgery , Computed Tomography Angiography/methods , Image Processing, Computer-Assisted/methods , Adult , Aged , Contrast Media/administration & dosage , Endovascular Procedures , Feasibility Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Radiation Dosage , Radiation Exposure , Signal-To-Noise Ratio , Single-Blind Method
10.
Br J Radiol ; 90(1075): 20160506, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28555508

ABSTRACT

OBJECTIVE: To evaluate the feasibility of using contrast medium (CM) of low and ultra-low volumes and injection rates in aortic CT angiography (CTA) through the joint application of single-source dual-energy CT (ssDECT) and adaptive statistical iterative reconstruction (ASIR). METHODS: 120 patients with known or suspected aortic dissection underwent aortic CTA and were equally divided into 3 groups. Conventional 120-kVp scan with a CM volume of 70 ml and an injection rate of 5 ml s-1 was performed on Group A. Groups B and C underwent ssDECT scan with CM volumes of 0.6 and 0.4 ml kg-1, respectively. 40% and 50% ASIR algorithms were applied for Groups B and C, respectively. A five-point grading scheme was utilized to subjectively evaluate the image quality, and the CT value and contrast-to-noise ratio were recorded as objective measures. The radiation dose was also evaluated. RESULTS: Groups B and C had equivalent subjective scores and CT values as Group A, whereas they had higher or equivalent contrast-to-noise ratios. Group B had 40.1% and 30% reductions on CM volume and injection rate, respectively, than Group A. Group C further resulted in 19.2% and 22% lesser CM volume and injection rate than Group B. The average effective radiation doses for the study groups were 22.5-24.5% lower than the control group. CONCLUSION: With the aid of ASIR and ssDECT for aortic CTA, it is feasible to adopt low and ultra-low CM volumes and injection rates while obtaining good quality images. Advances in knowledge: Low and ultra-low CM volumes and injection rates are feasible in CTA through the joint application of ssDECT and ASIR.


Subject(s)
Aortic Aneurysm/diagnostic imaging , Aortic Dissection/diagnostic imaging , Computed Tomography Angiography/methods , Contrast Media/administration & dosage , Iohexol/administration & dosage , Radiographic Image Interpretation, Computer-Assisted/methods , Feasibility Studies , Female , Humans , Male , Middle Aged , Prospective Studies , Radiation Dosage
11.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 31(1): 69-75, 2014 Feb.
Article in Chinese | MEDLINE | ID: mdl-24804487

ABSTRACT

This paper presents the preliminary design of data acquisition system of a portable uroflowmeter. The system uses double-hole cantilever pressure sensor. The signal is transferred to ATmega644PA microprogrammed control unit (MCU), converted by A/D (analog to digital) convertor. Then the further data are processed and get the corresponding relationship of weight-time and two curves of urine flow and urinary flow rate. In the measurement accuracy of the device about urine flow, two factors about the placement and height of the data acquisition are analyzed to show the accuracy of the equipment through the Origin 8.0 data analysis software. The design is characterized by low cost and high speed of data collection, real-time, high accuracy.


Subject(s)
Data Collection , Flowmeters , Monitoring, Ambulatory/instrumentation , Urination/physiology , Humans , Software , Urodynamics/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...