Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(6)2024 Mar 13.
Article in English | MEDLINE | ID: mdl-38541479

ABSTRACT

TiCp/steel composites are conventionally produced via powder metallurgy. In this paper, a liquid pressure infiltration method was developed to prepare a kind of spherical hierarchical architectured composite, in which spherical TiCp-rich hard phase regions were uniformly dispersed in TiCp-free soft phase region. The microstructure and mechanical properties of the architectured composites were carefully studied and compared with the common composite, as well as the effect of TiCp fraction on the properties. The results show that architecturual design can effectively improve both the toughness and strength of the composites. With TiCp content increasing from 30% to 50%, both the bending strength and the impact toughness of the architectured composites first increase, then decrease, and reach the highest at 40% TiCp. The highest impact toughness reaches 21.2 J/cm2, being 6.2 times that of the common composite and the highest strength being 67% higher. The pressure infiltration method possesses adaptability to varying shapes and sizes of the products, allowing for large-scale preparation. Therefore, for the first time, the combination of pressure infiltration preparation and architectural design was applied to TiCp/steel composites.

2.
Molecules ; 29(5)2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38474534

ABSTRACT

Fe-Cr-C-B wear-resistant steels are widely used as wear-resistant alloys in harsh environments. The M3X (M = Fe, Cr; X = C, B) cementite-type material is a commonly used strengthening phase in these alloys. This study investigated the mechanical properties of cementite (Fe, Cr)3(C, B) using the first-principle density functional theory. We constructed crystal structures of (Fe, Cr)3(C, B) with different concentrations of Cr and B. The bulk modulus, shear modulus, Young's modulus, Poisson's ratio, and hardness of the material were calculated, and a comprehensive mechanical property database based on CALPHAD modeling of the full composition was established. The optimal concentrations of the (Fe, Cr)3(C, B) phase were systematically evaluated across its entire composition range. The material exhibited the highest hardness, shear modulus, and Young's modulus at Cr and B concentrations in the range of 70-95 at% and 40 at%, respectively, rendering it difficult to compress and relatively poor in machinability. When the B content exceeded 90 at%, and the Cr content was zero, the shear modulus and hardness were low, resulting in poor resistance to deformation, reduced stiffness, and ease of plastic processing. This study provides an effective alloying strategy for balancing the brittleness and toughness of (Fe, Cr)3(C, B) phases.

3.
Materials (Basel) ; 17(1)2023 Dec 29.
Article in English | MEDLINE | ID: mdl-38204037

ABSTRACT

The Ti-6Al-4V (TC4) alloy wheel hub has exhibited some defects that affect the properties during the vertical centrifugal casting process. Therefore, the analysis of the solidification process would contribute to solving the above-mentioned problems. In this study, an orthogonal experimental design was employed to optimize the process parameters (rotational speed, mold preheating temperature, and pouring temperature) of the vertical centrifugal casting method. The effects of process parameters on the velocity field, temperature field, and total shrinkage porosity during the solidification process were explored, and the microstructure and mechanical properties of the wheel hub prepared by the vertical centrifugal casting method were also investigated. The results showed that the rotational speed mainly induced the change of the velocity field. The pouring temperature and mold preheating temperature affected the temperature field and solidification time. Based on the analysis of the orthogonal experiment, the optimal parameters were confirmed as a rotational speed of 225 rpm, mold preheating temperature of 400 °C, and pouring temperature of 1750 °C, respectively. The simulation results of total shrinkage porosity were in agreement with the experiment results. The wheel hub was composed of nonuniform α and ß phases. The lath α phase precipitated from larger ß grains with different orientations. Compared with the other samples at different locations, the α phase in the PM sample (middle of the TC4 wheel hub) displayed high peak intensity and uniformly distributed ß phase along the radial direction of the wheel hub. Moreover, the PM sample revealed a higher tensile strength of 820 MPa and similar Vickers hardness of 318 HV compared with the other samples at different locations, which were higher than those of rolling and extrusion molding. This experiment design would provide a good reference for the vertical centrifugal casting of the TC4 alloy.

4.
Nanoscale Res Lett ; 16(1): 71, 2021 Apr 29.
Article in English | MEDLINE | ID: mdl-33914172

ABSTRACT

In order to reduce the thermal stress in high chromium cast iron (HCCI) matrix composites reinforced by zirconia toughened alumina (ZTA) ceramic particles, finite element simulation is performed to optimize the geometric configuration of ceramics perform. The previous model simplifies the overall structure of the ceramic particle preform and adds boundary conditions to simulate the particles, which will cause uncontrollable error in the results. In this work, the equivalent grain models are used to describe the actual preform, making the simulation results closer to the actual experimental results. The solidification process of composite material is simulated, and the infiltration between molten iron and ceramic particles is realized. Thermal stress in solidification process and compression stress distribution are obtained. The results show that adding 10-mm round holes on the preform can improve the performance of the composite, which is helpful to prevent the cracks and increases the plasticity of the material.

5.
Mater Sci Eng C Mater Biol Appl ; 98: 279-287, 2019 May.
Article in English | MEDLINE | ID: mdl-30813028

ABSTRACT

The present study reports the results of the microstructure, mechanical properties and in vitro bioactivity of the Ti-13Nb-13Zr based composite with 10 wt% CPP (calcium pyrophosphate), densified using spark plasma sintering process (SPS) at different sintering temperatures (900-1200 °C). The results show that the sintered composites mainly consist of ß-Ti, α-Ti, and ceramic interphases (Ti2O, CaTiO3, CaZrO3, CaO, TixPy). With the sintering temperature increasing, α-Ti and ceramic interphases gradually increase, and relative density, elastic modulus, compressive strength and yield strength of the composites also reveal an increasing tendency. However, Ti-13Nb-13Zr-10CPP composite sintered at 1000 °C exhibits high matching elastic modulus (46 GPa) and compressive strength (1617 MPa) due to uniform structure and high density. In addition, in vitro mineralization assays demonstrate the apatite-forming ability of the composite (1000 °C) and its higher surface bioactivity as compared to the Ti-13Nb-13Zr alloy. Furthermore, ROS1728 osteoblast culture evidences that the composite (1000 °C) stimulates cell adhesion and growth due to the pore characteristics and ceramic interphases. Therefore, the prepared Ti-13Nb-13Zr-10CPP composite at 1000 °C exhibits immense potential as a biomedical material.


Subject(s)
Biocompatible Materials/chemistry , Calcium Pyrophosphate/chemistry , Titanium/chemistry , Alloys/chemistry , Biocompatible Materials/pharmacology , Cell Line , Humans , Materials Testing , Osteoblasts/cytology , Osteoblasts/drug effects
6.
Materials (Basel) ; 12(1)2018 Dec 22.
Article in English | MEDLINE | ID: mdl-30583504

ABSTRACT

In this work, an electric current pulse (ECP) of 500A was applied on a hypereutectic high chromium cast iron (HHCCI) melt before it began to solidify, and the effect of ECP on primary carbides was investigated. The characteristics of the primary carbides were analyzed by X-ray diffraction (XRD), electron probe micro-analyzer (EPMA), transmission electron microscopy (TEM), micro hardness tester, and other techniques. The results showed that ECP not only refined the primary (Cr, Fe)7C3 carbides, but also decreased the average content of Cr in the primary carbides. At the same time, the average value of micro hardness of the primary carbides increased by about 84 Kgf/mm², which contradicts existing knowledge that hardness increases with an increase in Cr content. XRD analysis showed that the crystal structure of the primary carbides did not change. The results of EPMA indicated that the Cr/Fe ratio gradually decreased from the center to the edges of the carbide particles. Further investigation revealed that the uneven distribution of elements caused by ECP led to an increase in defects (including twins, antiphase boundaries, and dislocations). This increase in defect density is the main reason for the increase in micro hardness instead of the expected decrease. The mechanism of the change in primary carbides was analyzed in detail in this paper, which has provided a new method for the refinement of primary carbides and for improving the properties of primary carbides.

7.
Materials (Basel) ; 11(6)2018 Jun 11.
Article in English | MEDLINE | ID: mdl-29891779

ABSTRACT

In this work, tungsten carbide particles (WCp, spherical and irregular particles)-reinforced iron matrix composites were manufactured utilizing a liquid sintering technique. The mechanical properties and the fracture mechanism of WCp/iron matrix composites were investigated theoretically and experimentally. The crack schematic diagram and fracture simulation diagram of WCp/iron matrix composites were summarized, indicating that the micro-crack was initiated both from the interface for spherical and irregular WCp/iron matrix composites. However, irregular WCp had a tendency to form spherical WCp. The micro-cracks then expanded to a wide macro-crack at the interface, leading to a final failure of the composites. In comparison with the spherical WCp, the irregular WCp were prone to break due to the stress concentration resulting in being prone to generating brittle cracking. The study on the fracture mechanisms of WCp/iron matrix composites might provide a theoretical guidance for the design and engineering application of particle reinforced composites.

8.
Am J Med Sci ; 352(5): 481-486, 2016 Nov.
Article in English | MEDLINE | ID: mdl-27865295

ABSTRACT

BACKGROUND: To explore the relationship between age, sex, the level of Helicobacter pylori (HP) infection and serum pepsinogen (PG) in healthy people undergoing a medical examination. METHODS: A total of 6,596 "healthy" individuals undergoing a medical examination were selected as subjects in this study. The concentrations of serum pepsinogen I (PGI) and serum pepsinogen II (PGII) were tested for each of the subjects using time-resolved fluorescence immunoassay characterized with high sensitivity and wide measuring range. The infection ratio and level of HP were tested using a 13C-urea breath test to analyze the relationship between age, sex, HP infection, and serum PGs. RESULTS: The PGI, PGII and PGI-to-PGII ratio (x¯±S) were higher in males than in females. The serum PGI and PGII levels gradually increased with age. HP infection rate was 48.83%, and the serum PGI, PGII and PGI-to-PGII ratio (x¯±S) were 187.05 ± 73.50µg/L, 18.09 ± 8.68µg/L and 11.67 ± 5.44, respectively in the HP-positive group and 150.39 ± 67.04µg/L, 11.50 ± 7.45µg/L and 15.67 ± 8.19, respectively in the HP-negative group. There was significant difference in the detection rate of an abnormal PG between the 2 groups as with the worsening of HP infection, 13C-urea breath test and serum PGI and PGII levels increased, but the PGI-to-PGII ratio decreased significantly. CONCLUSIONS: Serum PGI and PGII levels were correlated with age, sex and the level of HP infection. Therefore, the influencing factors of age, sex and the level of HP infection should be considered when screening stomach diseases using PG.


Subject(s)
Helicobacter pylori , Pepsinogen A/blood , Pepsinogen C/blood , Adult , Age Factors , Aged , Aged, 80 and over , Female , Healthy Volunteers , Humans , Male , Middle Aged , Sex Factors , Young Adult
9.
Sci Rep ; 6: 34007, 2016 Sep 23.
Article in English | MEDLINE | ID: mdl-27659072

ABSTRACT

The ordered non-stoichiometric V8C7 can form in the VCy carbides by the disorder-order phase transformation. The intrusion of ordered carbon vacancies can affect their stability, mechanical, thermal and electronic properties. The relatively thermodynamic stability and mechanical properties at high temperature for the ordered stoichiometric VC and non-stoichiometric V8C7 are investigated in this paper by first-principle calculations combined with the quasi-harmonic approximation. The difference between the properties of VC and V8C7 can be obtained. We find that the V8C7 is thermodynamic more stable than VC, but has weaker elastic heat resistance than VC. Moreover, the minimum thermal conductivity of VC is a little larger than V8C7 and a simple way is proposed to characterize the anisotropy of lattice thermal conductivity based on the Cahill's model.

10.
Sci Rep ; 6: 21821, 2016 Feb 23.
Article in English | MEDLINE | ID: mdl-26902857

ABSTRACT

A recently experimental discovered (Cheng et al., Phys. Rev. Lett. 114, 117001 (2015)) of superconductivity on the border of long-range magnetic order in the itinerant-electron helimagnet MnP via the application of high pressure makes MnP the first Mn-based superconductor. In this paper, we carry out first-principles calculations on MnX (X = N, P, As, Sb) and find superconducting critical temperature TC of MnP sharply increases near the critical pressure PC ≈ 8 GPa, which is in good agreement with the experiments. Electron-phonon coupling constant λ and electronic density of states at the Fermi level N (EF) are found to increase with pressure for MnP, which lead to the increase of TC of MnP. Moreover, we also find that the TC of MnAs and MnSb are higher than MnP, implying that the MnAs and MnSb may be the more potential Mn-based superconducting materials.

11.
Guang Pu Xue Yu Guang Pu Fen Xi ; 29(9): 2585-9, 2009 Sep.
Article in Chinese | MEDLINE | ID: mdl-19950682

ABSTRACT

Titanium nitride (TIN) hard protective films were fabricated on AISI52100 bearing steel surface employing plasma immersion ion implantation and deposition (PIIID) technique. The TiN films were characterized using a variety of test methods. Atomic force microscope (AFM) revealed that the titanium nitride film has extremely smooth surface, very high uniformity and efficiency of space filling over large areas. X-ray diffraction (XRD) result indicated that (200) crystal face of titanium nitride phase is the preferred orientation and three kinds of titanium components exist in the surface modified layer. Tailor fitting analysis of X-ray photoelectron spectroscopy (XPS) combined with Ar ion etching proved that Ti2p(1/2) and Ti2p(3/2) have two peaks in the titanium nitride film layer, respectively. It is shown that different chemical state exists in titanium compound. N(1s) bond energy of XPS has also three fitting peaks at 396.51, 397. 22 and 399.01 eV, corresponding to the nitrogen atom in TiNxOy, TiN and N--N, respectively. Combined with the XPS Tailor fitting analysis results of O(1s) bond energy, it was shown that there is a large amount of titanium nitride phase in addition to a small amount of simple substance nitrogen and oxide of titanium in the surface layer. The whole film system is made up of TiN, TiO2, N--N and Ti--O--N compound.

SELECTION OF CITATIONS
SEARCH DETAIL
...