Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Clin Mol Hepatol ; 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38934108

ABSTRACT

In managing metabolic dysfunction-associated steatotic liver disease, which affects over 30% of the general population, effective noninvasive biomarkers for assessing disease severity, monitoring disease progression, predicting the development of liver-related complications, and assessing treatment response are crucial. The advantage of simple fibrosis scores lies in their widespread accessibility through routinely performed blood tests and extensive validation in different clinical settings. They have shown reasonable accuracy in diagnosing advanced fibrosis and good performance in excluding the majority of patients with a low risk of liver-related complications. Among patients with elevated serum fibrosis scores, a more specific fibrosis and imaging biomarker has proved useful to accurately identify patients at risk of liver-related complications. Among specific fibrosis blood biomarkers, enhanced liver fibrosis is the most widely utilized and has been approved in the United States as a prognostic biomarker. For imaging biomarkers, the availability of vibration-controlled transient elastography has been largely improved over the past years, enabling the use of liver stiffness measurement (LSM) for accurate assessment of significant and advanced fibrosis, and cirrhosis. Combining LSM with other routinely available blood tests enhances the ability to diagnose at-risk metabolic dysfunction-associated steatohepatitis; and predict liver-related complications, some reaching an accuracy comparable to that of liver biopsy. Magnetic resonance imaging-based modalities provide the most accurate quantification of liver fibrosis, though the current utilization is limited to research settings. Expanding their future use in clinical practice depends on factors such as cost and facility availability.

2.
Chemosphere ; 317: 137892, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36657581

ABSTRACT

It is still a big challenge for textile industry in improving fire resistance and reducing melt dripping with minimal loss on the physical properties of polyethylene terephthalate (PET) fabrics. In this work, a highly-effective hyperbranched flame retardant (DT) was first synthesized by ester exchange without using any organic solvent. Then, the DT foam was prepared and blade coated on PET fabric to improve the fire performance. The prepared PET fabric with only 2.7% weight gain of DT was self-extinguished and did not produce any molten dripping during the vertical flammable test. The peak heat release rate and total heat release of the PET fabric sample with 19.4% DT were decreased by 42.0% and 57.1%, respectively compared with that of the control PET. Besides, the as-prepared PET fabric sample showed better physical properties such as breaking strength, vapor permeability, air permeability, antistatic property, and softness than the control PET fabric sample. The DT foam finishing process did not involve any organic solvent and consumed less water and energy compared with conventional fabric treatments. It is expected that this work provides a facile and eco-friendly strategy for fabricating flame retardant PET fabric with excellent comprehensive performances.


Subject(s)
Flame Retardants , Polyethylene Terephthalates , Textiles , Solvents
SELECTION OF CITATIONS
SEARCH DETAIL
...